Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy

Abstract

Spinal muscular atrophy (SMA), the predominant form of motoneuron disease in children and young adults is caused by loss of function of the SMN protein. On the basis of a disrupted splice acceptor site in exon 7, transcripts from a second SMN gene in humans called SMN2 cannot give rise to SMN protein at sufficient levels for maintaining function of motoneurons and motor circuits. First clinical trials with Spinraza/Nusinersen, a drug that counteracts disrupted splicing of SMN2 transcripts, have shown that elevating SMN levels can successfully interfere with motoneuron dysfunction. This review summarizes current knowledge about the pathophysiological alterations in Smn-deficient motoneurons, which lead to defective neuromuscular transmission and altered spinal circuit formation. Both pathological mechanisms are important targets for therapeutic intervention. However, the developmental time window when therapeutic interventions ideally should start is not known. Endogenous SMN expression both from SMN1 and SMN2 genes is high at early developmental stages and declines progressively in humans and mice. Thus, therapeutic SMN upregulation should start just before SMN declines below a critical threshold, and before irreversible defects occur at neuromuscular junctions and in spinal circuits. Previous results indicate that loss of Smn function leads to synaptic dysfunction during a stage of neuromuscular development when synaptic strength determines which synapses are maintained or not. This time window appears as an important target for therapy, which possibly could be supported by additional strategies that strengthen synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pearn JH . The gene frequency of acute Werdnig-Hoffmann disease (SMA type 1). A total population survey in North-East England. J Med Genet 1973; 10: 260–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pearn J . Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 1978; 15: 409–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lunn MR, Wang CH . Spinal muscular atrophy. Lancet 2008; 371: 2120–2133.

    PubMed  Google Scholar 

  4. Burghes AH, Beattie CE . Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10: 597–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Crawford TO, Pardo CA . The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 1996; 3: 97–110.

    CAS  PubMed  Google Scholar 

  6. Munsat TL, Davies KE . International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord 1992; 2: 423–428.

    CAS  PubMed  Google Scholar 

  7. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L et al. Identification and characterization of a spinal muscular atrophy- determining gene. Cell 1995; 80: 155–165.

    CAS  PubMed  Google Scholar 

  8. Rochette CF, Gilbert N, Simard LR . SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet 2001; 108: 255–266.

    CAS  PubMed  Google Scholar 

  9. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 1997; 16: 265–269.

    CAS  PubMed  Google Scholar 

  10. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 1999; 8: 1177–1183.

    CAS  PubMed  Google Scholar 

  11. Lorson CL, Hahnen E, Androphy EJ, Wirth B . A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 1999; 96: 6307–6311.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wirth B, Barkats M, Martinat C, Sendtner M, Gillingwater TH . Moving towards treatments for spinal muscular atrophy: hopes and limits. Expert Opin Emerg Drugs 2015; 20: 353–356.

    CAS  PubMed  Google Scholar 

  13. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010; 28: 271–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Duque SI, Arnold WD, Odermatt P, Li X, Porensky PN, Schmelzer L et al. A large animal model of spinal muscular atrophy and correction of phenotype. Ann Neurol 2015; 77: 399–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther 2015; 23: 477–487.

    CAS  PubMed  Google Scholar 

  16. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011; 478: 123–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2012; 21: 1625–1638.

    CAS  PubMed  Google Scholar 

  18. Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 2014; 345: 688–693.

    CAS  PubMed  Google Scholar 

  19. Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol 2015; 11: 511–517.

    CAS  PubMed  Google Scholar 

  20. Van Alstyne M, Pellizzoni L . Advances in modeling and treating spinal muscular atrophy. Curr Opin Neurol 2016; 29: 549–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh NK, Singh NN, Androphy EJ, Singh RN . Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 2006; 26: 1333–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR . Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 2008; 82: 834–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh NN, Hollinger K, Bhattacharya D, Singh RN . An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing. RNA 2010; 16: 1167–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh NN, Lawler MN, Ottesen EW, Upreti D, Kaczynski JR, Singh RN . An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucleic Acids Res 2013; 41: 8144–8165.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh NN, Lee BM, Singh RN . Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions. Ann NY Acad Sci 2015; 1341: 176–187.

    CAS  PubMed  Google Scholar 

  26. Ottesen EW . ISS-N1 makes the first fda-approved drug for spinal muscular atrophy. Transl Neurosci 2017; 8: 1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Pinto AM, Wan L, Wang W, Berg MG, Oliva I et al. Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad SciUSA 2013; 110: 19348–19353.

    CAS  Google Scholar 

  28. Mentis GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 2011; 69: 453–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Imlach WL, Beck ES, Choi BJ, Lotti F, Pellizzoni L, McCabe BD . SMN is required for sensory-motor circuit function in Drosophila. Cell 2012; 151: 427–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan YB, Miguel-Aliaga I, Franks C, Thomas N, Trulzsch B, Sattelle DB et al. Neuromuscular defects in a Drosophila survival motor neuron gene mutant. Hum Mol Genet 2003; 12: 1367–1376.

    CAS  PubMed  Google Scholar 

  31. Lotti F, Imlach WL, Saieva L, Beck ES, Hao le T, Li DK et al. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012; 151: 440–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li DK, Tisdale S, Lotti F, Pellizzoni L . SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 2014; 32: 22–29.

    CAS  PubMed  Google Scholar 

  33. Garcia EL, Lu Z, Meers MP, Praveen K, Matera AG . Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes. RNA 2013; 19: 1510–1516.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Battaglia G, Princivalle A, Forti F, Lizier C, Zeviani M . Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum Mol Genet 1997; 6: 1961–1971.

    CAS  PubMed  Google Scholar 

  35. Burlet P, Huber C, Bertrandy S, Ludosky MA, Zwaenepoel I, Clermont O et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 1998; 7: 1927–1933.

    CAS  PubMed  Google Scholar 

  36. Jablonka S, Schrank B, Kralewski M, Rossoll W, Sendtner M . Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum Mol Genet 2000; 9: 341–346.

    CAS  PubMed  Google Scholar 

  37. d'Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM et al. The antisense transcript SMN-AS1 regulates smn expression and is a novel therapeutic target for spinal muscular atrophy. Neuron 2017; 93: 66–79.

    CAS  PubMed  Google Scholar 

  38. Cho S, Dreyfuss G . A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 2010; 24: 438–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Talbot K, Ponting CP, Theodosiou AM, Rodrigues NR, Surtees R, Mountford R et al. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism? Hum Mol Genet 1997; 6: 497–500.

    CAS  PubMed  Google Scholar 

  40. Schmid A, DiDonato CJ . Animal models of spinal muscular atrophy. J Child Neurol 2007; 22: 1004–1012.

    PubMed  Google Scholar 

  41. Sulston JE . Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 1983; 48 (Pt 2): 443–452.

    PubMed  Google Scholar 

  42. Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE . The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 1999; 8: 2133–2143.

    CAS  PubMed  Google Scholar 

  43. Miguel-Aliaga I, Chan YB, Davies KE, van den HM . Disruption of SMN function by ectopic expression of the human SMN gene in Drosophila. FEBS Lett 2000; 486: 99–102.

    CAS  PubMed  Google Scholar 

  44. McWhorter ML, Monani UR, Burghes AH, Beattie CE . Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 2003; 162: 919–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hao, le T, Burghes AH, Beattie CE . Generation and Characterization of a genetic zebrafish model of SMA carrying the human SMN2 gene. Mol Neurodegener 2011; 6: 24.

    CAS  PubMed Central  Google Scholar 

  46. Hao lT, Duy PQ, Jontes JD, Wolman M, Granato M, Beattie CE . Temporal requirement for SMN in motoneuron development. Hum Mol Genet 2013; 22: 2612–2625.

    CAS  PubMed Central  Google Scholar 

  47. DiDonato CJ, Ingraham SE, Mendell JR, Prior TW, Lenard S, Moxley RT et al. Deletion and conversion in spinal muscular atrophy patients: is there a relationship to severity? Ann Neurol 1997; 41: 230–237.

    CAS  PubMed  Google Scholar 

  48. Schrank B, Gotz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 1997; 94: 9920–9925.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 2000; 9: 333–339.

    CAS  PubMed  Google Scholar 

  50. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH et al. A mouse model for spinal muscular atrophy. Nat Genet 2000; 24: 66–70.

    CAS  PubMed  Google Scholar 

  51. Kariya S, Park GH, Maeno-Hikichi Y, Leykekhman O, Lutz C, Arkovitz MS et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 2008; 17: 2552–2569.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 2005; 14: 845–857.

    CAS  PubMed  Google Scholar 

  53. Sanes JR, Lichtman JW . Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 1999; 22: 389–442.

    CAS  PubMed  Google Scholar 

  54. Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C et al. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 2003; 160: 41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Simon CM, Jablonka S, Ruiz R, Tabares L, Sendtner M . Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Hum Mol Genet 2010; 19: 973–986.

    CAS  PubMed  Google Scholar 

  56. Rossoll W, Kroning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M . Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 2002; 11: 93–105.

    CAS  PubMed  Google Scholar 

  57. Jablonka S, Beck M, Lechner BD, Mayer C, Sendtner M . Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J Cell Biol 2007; 179: 139–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 2003; 163: 801–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Boza-Moran MG, Martinez-Hernandez R, Bernal S, Wanisch K, so-Rallo E, Le HA et al. Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Sci Rep 2015; 5: 11696.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fischer U, Liu Q, Dreyfuss G . The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 1997; 90: 1023–1029.

    CAS  PubMed  Google Scholar 

  61. Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G . A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 1998; 95: 615–624.

    CAS  PubMed  Google Scholar 

  62. Liu Q, Fischer U, Wang F, Dreyfuss G . The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 1997; 90: 1013–1021.

    CAS  PubMed  Google Scholar 

  63. Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008; 133: 585–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Baumer D, Lee S, Nicholson G, Davies JL, Parkinson NJ, Murray LM et al. Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 2009; 5: e1000773.

    PubMed  PubMed Central  Google Scholar 

  65. Praveen K, Wen Y, Matera AG . A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Rep 2012; 1: 624–631.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Doktor TK, Hua Y, Andersen HS, Broner S, Liu YH, Wieckowska A et al. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2017; 45: 395–416.

    CAS  PubMed  Google Scholar 

  67. Wishart TM, Mutsaers CA, Riessland M, Reimer MM, Hunter G, Hannam ML et al. Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J Clin Invest 2014; 124: 1821–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Oprea GE, Krober S, McWhorter ML, Rossoll W, Muller S, Krawczak M et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 2008; 320: 524–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Murase S, Mosser E, Schuman EM . Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 2002; 35: 91–105.

    CAS  PubMed  Google Scholar 

  70. Li XM, Dong XP, Luo SW, Zhang B, Lee DH, Ting AK et al. Retrograde regulation of motoneuron differentiation by muscle beta-catenin. Nat Neurosci 2008; 11: 262–268.

    CAS  PubMed  Google Scholar 

  71. Ojeda L, Gao J, Hooten KG, Wang E, Thonhoff JR, Dunn TJ et al. Critical role of PI3K/Akt/GSK3beta in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS ONE 2011; 6: e23414.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Saal L, Briese M, Kneitz S, Glinka M, Sendtner M . Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA 2014; 20: 1789–1802.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Briese M, Saal L, Appenzeller S, Moradi M, Baluapuri A, Sendtner M . Whole transcriptome profiling reveals the RNA content of motor axons. Nucleic Acids Res 2016; 44: e33.

    PubMed  Google Scholar 

  74. See K, Yadav P, Giegerich M, Cheong PS, Graf M, Vyas H et al. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 2014; 23: 1754–1770.

    CAS  PubMed  Google Scholar 

  75. Kong L, Wang X, Choe DW, Polley M, Burnett BG, Bosch-Marce M et al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 2009; 29: 842–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ruiz R, Casanas JJ, Torres-Benito L, Cano R, Tabares L . Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci 2010; 30: 849–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang H, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ . Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J Neurosci 2006; 26: 8622–8632.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dombert B, Sivadasan R, Simon CM, Jablonka S, Sendtner M . Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PLoS One 2014; 9: e110846.

    PubMed  PubMed Central  Google Scholar 

  79. Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, Atsuta N et al. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 2013; 5: 221–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamazaki T, Chen S, Yu Y, Yan B, Haertlein TC, Carrasco MA et al. FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep 2012; 2: 799–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fallini C, Zhang H, Su Y, Silani V, Singer RH, Rossoll W et al. The survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J Neurosci 2011; 31: 3914–3925.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH et al. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neuro biol 2014; 74: 319–332.

    CAS  Google Scholar 

  83. Zhao DY, Gish G, Braunschweig U, Li Y, Ni Z, Schmitges FW et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 2016; 529: 48–53.

    PubMed  Google Scholar 

  84. Torres-Benito L, Neher MF, Cano R, Ruiz R, Tabares L . SMN requirement for synaptic vesicle, active zone and microtubule postnatal organization in motor nerve terminals. PLoS ONE 2011; 6: e26164.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A et al. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci 2016; 19: 1610–1618.

    CAS  PubMed  Google Scholar 

  86. Huttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 2005; 438: 512–515.

    PubMed  Google Scholar 

  87. Sasaki Y, Welshhans K, Wen Z, Yao J, Xu M, Goshima Y et al. Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci 2010; 30: 9349–9358.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Moradi M, Sivadasan R, Saal L, Luningschror P, Dombert B, Rathod RJ et al. Differential roles of alpha-, beta-, and gamma-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol 2017; 216: 793–814.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter RH, Hupperich K, Hoffmann A et al. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am J Hum Genet 2016; 99: 647–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ackermann B, Krober S, Torres-Benito L, Borgmann A, Peters M, Hosseini Barkooie SM et al. Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality. 2013; 22: 1328–1347.

  91. Bowerman M, Beauvais A, Anderson CL, Kothary R . Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 2010; 19: 1468–1478.

    CAS  PubMed  Google Scholar 

  92. Nolle A, Zeug A, van BJ, Tonges L, Gerhard R, Brinkmann H et al. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 2011; 20: 4865–4878.

    PubMed  Google Scholar 

  93. Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ . An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 2006; 9: 1265–1273.

    CAS  PubMed  Google Scholar 

  94. Zhang HL, Singer RH, Bassell GJ . Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol 1999; 147: 59–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang HL, Eom T, Oleynikov Y, Shenoy SM, Liebelt DA, Dictenberg JB et al. Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 2001; 31: 261–275.

    CAS  PubMed  Google Scholar 

  96. Chao JA, Patskovsky Y, Patel V, Levy M, Almo SC, Singer RH . ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev 2010; 24: 148–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Donlin-Asp PG, Fallini C, Campos J, Chou CC, Merritt ME, Phan HC et al. The survival of motor neuron protein acts as a molecular chaperone for mRNP assembly. Cell Rep 2017; 18: 1660–1673.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Glinka M, Herrmann T, Funk N, Havlicek S, Rossoll W, Winkler C et al. The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons. Hum Mol Genet 2010; 19: 1951–1966.

    CAS  PubMed  Google Scholar 

  99. Rathod R, Havlicek S, Frank N, Blum R, Sendtner M . Laminin induced local axonal translation of beta-actin mRNA is impaired in SMN-deficient motoneurons. Histochem Cell Biol 2012; 138: 737–748.

    CAS  PubMed  Google Scholar 

  100. Kye MJ, Niederst ED, Wertz MH, Goncalves IC, Akten B, Dover KZ et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014; 23: 6318–6331.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ning K, Drepper C, Valori CF, Ahsan M, Wyles M, Higginbottom A et al. PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 2010; 19: 3159–3168.

    CAS  PubMed  Google Scholar 

  102. Murray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH . Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 2008; 17: 949–962.

    CAS  PubMed  Google Scholar 

  103. Murray LM, Lee S, Baumer D, Parson SH, Talbot K, Gillingwater TH . Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 2010; 19: 420–433.

    CAS  PubMed  Google Scholar 

  104. McGovern VL, Gavrilina TO, Beattie CE, Burghes AH . Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 2008; 17: 2900–2909.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cifuentes-Diaz C, Nicole S, Velasco ME, Borra-Cebrian C, Panozzo C, Frugier T et al. Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. Hum Mol Genet 2002; 11: 1439–1447.

    CAS  PubMed  Google Scholar 

  106. Park GH, Maeno-Hikichi Y, Awano T, Landmesser LT, Monani UR . Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci 2010; 30: 12005–12019.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ling KK, Gibbs RM, Feng Z, Ko CP . Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum Mol Genet 2012; 21: 185–195.

    PubMed  Google Scholar 

  108. Shi L, Fu AK, Ip NY . Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35: 441–453.

    CAS  PubMed  Google Scholar 

  109. Tejero R, Lopez-Manzaneda M, Arumugam S, Tabares L . Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum Mol Genet 2016; 25: 4703–4716.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Work in the author's lab is supported by the Deutsche Forschungsgemeinschaft, Grants JA 1823/3-1 und SE 697/6-1, and by the German Bundesministerium für Bildung und Forschung, Grant Dystract, TP6 to MS. We thank Oxford University Press for permission to reproduce Figure 1 from reference 36, and Rockefeller University Press for permission to reproduce Figure 2 from reference 57.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sendtner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jablonka, S., Sendtner, M. Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther 24, 506–513 (2017). https://doi.org/10.1038/gt.2017.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.46

This article is cited by

Search

Quick links