Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MnSOD mediated by HSV vectors in the periaqueductal gray suppresses morphine withdrawal in rats

Abstract

Morphine appears to be the most active metabolite of heroin; therefore, the effects of morphine are important in understanding the ramifications of heroin abuse. Opioid physical dependence (withdrawal response) may have very long-lasting effects on the motivation for reward, including the incubation of cue-induced drug-seeking behavior. However, the exact mechanisms of morphine withdrawal (MW) are not clear yet, and its treatment remains elusive. Periaqueductal gray (PAG) is one of the important sites in the pathogenesis of MW. Here, we used recombinant herpes simplex virus (HSV) vectors that encode the sod2 gene expressing manganese superoxide dismutase (MnSOD) to evaluate its therapeutic potential in MW. Microinjection of HSV vectors expressing MnSOD into the PAG reduced the MW syndrome. MnSOD vectors suppressed the upregulated mitochondrial superoxide, and endoplasmic reticulum stress markers (glucose-related protein 78 (GRP78) and activating transcription factor 6 alpha (ATF6α)) in the PAG induced by MW. Immunostaining showed that mitochondrial superoxide, GRP78 and ATF6α were colocalized with neuronal nuclei (a neuronal-specific marker), suggesting that they are located in the neurons in the PAG. These results suggest that overexpression of MnSOD by HSV vectors may relieve opioid dependence. This study may provide a novel therapeutic approach to morphine physical withdrawal response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Steele AD, Henderson EE, Rogers TJ . Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 2003; 309: 99–107.

    Article  CAS  Google Scholar 

  2. Hasanein P, Teimuri Far M, Emamjomeh A . Salvia officinalis L. attenuates morphine analgesic tolerance and dependence in rats: possible analgesic and sedative mechanisms. Am J Drug Alcohol Abuse 2015; 41: 405–413.

    Article  Google Scholar 

  3. Cooper ZD, Johnson KW, Pavlicova M, Glass A, Vosburg SK, Sullivan MA et al. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addict Biol 2015; 21: 895–903.

    Article  Google Scholar 

  4. Taylor DA, Fleming WW . Unifying perspectives of the mechanisms underlying the development of tolerance and physical dependence to opioids. J Pharmacol Exp Ther 2001; 297: 11–18.

    CAS  Google Scholar 

  5. Cami J, Farre M . Drug addiction. N Engl J Med 2003; 349: 975–986.

    Article  CAS  Google Scholar 

  6. Koob GF, Le Moal M . Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278: 52–58.

    Article  CAS  Google Scholar 

  7. Fishbain DA, Rosomoff HL, Rosomoff RS . Drug abuse, dependence, and addiction in chronic pain patients. Clin J Pain 1992; 8: 77–85.

    Article  CAS  Google Scholar 

  8. Rouibi K, Contarino A . Increased motivation to eat in opiate-withdrawn mice. Psychopharmacology (Berl.) 2012; 221: 675–684.

    Article  CAS  Google Scholar 

  9. Anderson EM, Neubert JK, Caudle RM . Long-term changes in reward-seeking following morphine withdrawal are associated with altered N-methyl-D-aspartate receptor 1 splice variants in the amygdala. Neuroscience 2012; 223: 45–55.

    Article  CAS  Google Scholar 

  10. Candas D, Li JJ . MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 2014; 20: 1599–1617.

    Article  CAS  Google Scholar 

  11. Fridovich I . Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97–112.

    Article  CAS  Google Scholar 

  12. Buettner GR . Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 2011; 11: 341–346.

    Article  CAS  Google Scholar 

  13. Pan J, Zhang Q, Zhang Y, Ouyang Z, Zheng Q, Zheng R . Oxidative stress in heroin administered mice and natural antioxidants protection. Life Sci 2005; 77: 183–193.

    Article  CAS  Google Scholar 

  14. Cemek M, Buyukokuroglu ME, Hazman O, Konuk M, Bulut S, Birdane YO . The roles of melatonin and vitamin E plus selenium in prevention of oxidative stress induced by naloxone-precipitated withdrawal in heroin-addicted rats. Biol Trace Elem Res 2011; 142: 55–66.

    Article  CAS  Google Scholar 

  15. Xu B, Wang Z, Li G, Li B, Lin H, Zheng R et al. Heroin-administered mice involved in oxidative stress and exogenous antioxidant-alleviated withdrawal syndrome. Basic Clin Pharmacol Toxicol 2006; 99: 153–161.

    Article  CAS  Google Scholar 

  16. Puskovic V, Wolfe D, Wechuck J, Krisky D, Collins J, Glorioso JC et al. HSV-mediated delivery of erythropoietin restores dopaminergic function in MPTP-treated mice. Mol Ther 2006; 14: 710–715.

    Article  CAS  Google Scholar 

  17. Guedon JM, Wu S, Zheng X, Churchill CC, Glorioso JC, Liu CH et al. Current gene therapy using viral vectors for chronic pain. Molecular pain 2015; 11: 27.

    Article  Google Scholar 

  18. Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol 2013; 9: 277–291.

    Article  CAS  Google Scholar 

  19. Hao S, Liu S, Zheng X, Zheng W, Ouyang H, Mata M et al. The role of TNFα in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology 2011; 36: 664–676.

    Article  CAS  Google Scholar 

  20. Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 2009; 23: 240–250.

    Article  CAS  Google Scholar 

  21. Borradaile NM, Buhman KK, Listenberger LL, Magee CJ, Morimoto ET, Ory DS et al. A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death. Mol Biol Cell 2006; 17: 770–778.

    Article  CAS  Google Scholar 

  22. Brookheart RT, Michel CI, Listenberger LL, Ory DS, Schaffer JE . The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress. J Biol Chem 2009; 284: 7446–7454.

    Article  CAS  Google Scholar 

  23. Pinelli A, Cighetti G, Trivulzio S . Plasma malondialdehyde levels and opiate withdrawal signs observed in rats treated with morphine plus naloxone: effects of α-lipoic acid administration. Fundam Clin Pharmacol 2008; 22: 439–445.

    Article  CAS  Google Scholar 

  24. Iida T, Yi H, Liu S, Huang W, Kanda H, Lubarsky DA et al. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats. Exp Neurol 2016; 281: 17–27.

    Article  CAS  Google Scholar 

  25. Kanda H, Liu S, Iida T, Yi H, Huang W, Levitt R et al. Inhibition of mitochondrial fission protein reduced mechanical allodynia and suppressed spinal mitochondrial superoxide induced by perineural HIV gp120 in rats. Anesth Analg 2016; 122: 264–272.

    Article  CAS  Google Scholar 

  26. Schwartz ES, Lee I, Chung K, Chung JM . Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 2008; 138: 514–524.

    Article  CAS  Google Scholar 

  27. Kim HY, Lee KY, Lu Y, Wang J, Cui L, Kim SJ et al. Mitochondrial Ca(2+) uptake is essential for synaptic plasticity in pain. J Neurosci 2011; 31: 12982–12991.

    Article  CAS  Google Scholar 

  28. Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12: 158.

    Article  Google Scholar 

  29. Tang HZ, Yang LM . Activation of the unfolded protein response in aged human lenses. Mol Med Rep 2015; 12: 389–393.

    Article  CAS  Google Scholar 

  30. Kania E, Pajak B, Orzechowski A . Calcium homeostasis and ER stress in control of autophagy in cancer cells. BioMed Research International 2015; 2015: 352794.

    Article  Google Scholar 

  31. Dobashi T, Tanabe S, Jin H, Mimura N, Yamamoto T, Nishino T et al. BiP, an endoplasmic reticulum chaperone, modulates the development of morphine antinociceptive tolerance. J Cell Mol Med 2010; 14: 2816–2826.

    Article  CAS  Google Scholar 

  32. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220–9231.

    Article  CAS  Google Scholar 

  33. Haze K, Yoshida H, Yanagi H, Yura T, Mori K . Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10: 3787–3799.

    Article  CAS  Google Scholar 

  34. Maurel M, Chevet E . Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 2013; 304: C1117–C1126.

    Article  CAS  Google Scholar 

  35. Laschka E, Teschemacher H, Mehraein P, Herz A . Sites of action of morphine involved in the development of physical dependence in rats. II. Morphine withdrawal precipitated by application of morphine antagonists into restricted parts of the ventricular system and by microinjection into various brain areas. Psychopharmacologia 1976; 46: 141–147.

    Article  CAS  Google Scholar 

  36. Maldonado R, Stinus L, Gold LH, Koob GF . Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther 1992; 261: 669–677.

    CAS  Google Scholar 

  37. Bozarth MA . Physical dependence produced by central morphine infusions: an anatomical mapping study. Neurosci Biobehav Rev 1994; 18: 373–383.

    Article  CAS  Google Scholar 

  38. Frederickson RC, Hewes CR, Aiken JW . Correlation between the in vivo and an in vitro expression of opiate withdrawal precipitated by naloxone: their antagonism by l-(-)-Δ9-tetrahydrocannabinol. J Pharmacol Exp Ther 1976; 199: 375–384.

    CAS  PubMed  Google Scholar 

  39. Geary WA 2nd, Wooten GF . Dose effects of naloxone on fixed morphine dependence: simultaneous behavioral and 2-deoxyglucose study in the rat. Brain Res 1985; 332: 69–78.

    Article  CAS  Google Scholar 

  40. Antonelli T, Beani L, Bianchi C, Rando S, Simonato M, Tanganelli S . Cortical acetylcholine release is increased and gamma-aminobutyric acid outflow is reduced during morphine withdrawal. Br J Pharmacol 1986; 89: 853–860.

    Article  CAS  Google Scholar 

  41. Mendelson J, Jones RT, Welm S, Baggott M, Fernandez I, Melby AK et al. Buprenorphine and naloxone combinations: the effects of three dose ratios in morphine-stabilized, opiate-dependent volunteers. Psychopharmacology (Berl.) 1999; 141: 37–46.

    Article  CAS  Google Scholar 

  42. Jin C, Araki H, Nagata M, Shimosaka R, Shibata K, Suemaru K et al. Expression of c-Fos in the rat central amygdala accompanies the acquisition but not expression of conditioned place aversion induced by withdrawal from acute morphine dependence. Behav Brain Res 2005; 161: 107–112.

    Article  CAS  Google Scholar 

  43. Mansouri MT, Khodayar MJ, Tabatabaee A, Ghorbanzadeh B, Naghizadeh B . Modulation of morphine antinociceptive tolerance and physical depenzdence by co-administration of simvastatin. Pharmacol Biochem Behav 2015; 137: 38–43.

    Article  CAS  Google Scholar 

  44. Wu SZ, Chen KT, Chen JY, Sung KC, Wang JJ, Liu KS et al. Phenothiazine-type antipsychotics may attenuate naloxone-precipitated withdrawal jumping in morphine-dependent mice. Acta Anaesthesiol Taiwan 2012; 50: 167–171.

    Article  Google Scholar 

  45. Yang L, Zhu CJ, Cao JL, Zeng YM . Inhibition of the spinal phosphoinositide 3-kinase exacerbates morphine withdrawal response. Neurosci Lett 2006; 404: 237–241.

    Article  CAS  Google Scholar 

  46. Skrabalova J, Drastichova Z, Novotny J . Morphine as a Potential Oxidative Stress-Causing Agent. Mini-Rev Org Chem 2013; 10: 367–372.

    Article  CAS  Google Scholar 

  47. Oliveira MT, Rego AC, Morgadinho MT, Macedo TR, Oliveira CR . Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann NY Acad Sci 2002; 965: 487–496.

    Article  CAS  Google Scholar 

  48. Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK . Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology 1985; 117: 793–795.

    Article  CAS  Google Scholar 

  49. Bajic D, Berde CB, Commons KG . Periaqueductal gray neuroplasticity following chronic morphine varies with age: role of oxidative stress. Neuroscience 2012; 226: 165–177.

    Article  CAS  Google Scholar 

  50. Wang M, Kaufman RJ . The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14: 581–597.

    Article  CAS  Google Scholar 

  51. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1999; 1: 479–485.

    Article  CAS  Google Scholar 

  52. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R . An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105: 891–902.

    Article  CAS  Google Scholar 

  53. Kim B, Kim HS, Jung EJ, Lee JY, Tsang BK, Lim JM et al. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Mol Carcinog 2016; 55: 918–928.

    Article  CAS  Google Scholar 

  54. Rigoulet M, Yoboue ED, Devin A . Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 2011; 14: 459–468.

    Article  CAS  Google Scholar 

  55. Huang J, Lam GY, Brumell JH . Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 2011; 14: 2215–2231.

    Article  CAS  Google Scholar 

  56. Cannon JR, Sew T, Montero L, Burton EA, Greenamyre JT . Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Exp Neurol 2011; 228: 41–52.

    Article  CAS  Google Scholar 

  57. Wilson SP, Yeomans DC, Bender MA, Lu Y, Goins WF, Glorioso JC . Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc Natl Acad Sci USA 1999; 96: 3211–3216.

    Article  CAS  Google Scholar 

  58. Westlund KN . Gene therapy for pancreatitis pain. Gene Ther 2009; 16: 483–492.

    Article  CAS  Google Scholar 

  59. Fink DJ, DeLuca NA, Goins WF, Glorioso JC . Gene transfer to neurons using herpes simplex virus-based vectors. Annu Rev Neurosci 1996; 19: 265–287.

    Article  CAS  Google Scholar 

  60. Yeomans DC, Wilson SP . Herpes virus-based recombinant herpes vectors: gene therapy for pain and molecular tool for pain science. Gene Ther 2009; 16: 502–508.

    Article  CAS  Google Scholar 

  61. Puskovic V, Wolfe D, Goss J, Huang S, Mata M, Glorioso JC et al. Prolonged biologically active transgene expression driven by HSV LAP2 in brain in vivo. Mol Ther 2004; 10: 67–75.

    Article  CAS  Google Scholar 

  62. Nayak S, Herzog RW . Progress and prospects: immune responses to viral vectors. Gene Ther 2010; 17: 295–304.

    Article  CAS  Google Scholar 

  63. Guo HL, Wolfe D, Epperly MW, Huang S, Liu K, Glorioso JC et al. Gene transfer of human manganese superoxide dismutase protects small intestinal villi from radiation injury. J Gastrointest Surg 2003; 7: 229–235; discussion 235-6.

    Article  Google Scholar 

  64. Trang T, Sutak M, Quirion R, Jhamandas K . Spinal administration of lipoxygenase inhibitors suppresses behavioural and neurochemical manifestations of naloxone-precipitated opioid withdrawal. Br J Pharmacol 2003; 140: 295–304.

    Article  CAS  Google Scholar 

  65. Hao S, Hu J, Fink DJ . Transgene-mediated enkephalin expression attenuates signs of naloxone-precipitated morphine withdrawal in rats with neuropathic pain. Behav Brain Res 2009; 197: 84–89.

    Article  CAS  Google Scholar 

  66. Valverde O, Noble F, Beslot F, Dauge V, Fournie-Zaluski MC, Roques BP . Δ9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci 2001; 13: 1816–1824.

    Article  CAS  Google Scholar 

  67. Gellert VF, Holtzman SG . Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J Pharmacol Exp Ther 1978; 205: 536–546.

    CAS  Google Scholar 

  68. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 2007; 27: 6006–6018.

    Article  CAS  Google Scholar 

  69. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 2009; 29: 159–168.

    Article  CAS  Google Scholar 

  70. Kanao M, Kanda H, Huang W, Liu S, Yi H, Candiotti KA et al. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats. Anesth Analg 2015; 120: 1394–1404.

    Article  CAS  Google Scholar 

  71. Yi H, Iida T, Liu S, Ikegami D, Liu Q, Iida A et al. IL-4 mediated by HSV vector suppresses morphine withdrawal response and decreases TNFα, NR2B, and pC/EBPβ in the periaqueductal gray in rats. Gene Ther 2017; e-pub ahead of print 16 March 2017; doi: 10.1038/gt.2017.11.

Download references

Acknowledgements

This work was partially supported by grants from the NIH DA020078 (SH), NS066792 (SH), DA34749 (S.H. and JCG). We thank the support from the Department (Chair Dr. Lubarsky) of Anesthesiology, University of Miami, FL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iida, T., Yi, H., Liu, S. et al. MnSOD mediated by HSV vectors in the periaqueductal gray suppresses morphine withdrawal in rats. Gene Ther 24, 314–324 (2017). https://doi.org/10.1038/gt.2017.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.22

Search

Quick links