Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems

Abstract

Because of its safe and effective protein expression profile, in vitro transcribed messenger RNA (IVT-mRNA) represents a promising candidate in the development of novel therapeutics for genetic diseases, vaccines or gene editing strategies, especially when its inherent shortcomings (for example, instability and immunogenicity) have been partially addressed via structural modifications. However, numerous unsolved technical difficulties in successful in vivo delivery of IVT-mRNA have greatly hindered the applications of IVT-mRNA in clinical development. Recent advances in nanotechnology and material science have yielded many promising nonviral delivery systems, some of which were able to efficiently facilitate targeted in vivo delivery of IVT-mRNA in safe and noninvasive manners. The diversity and flexibility of these delivery systems highlight the recent progress of IVT-mRNA-based therapy using nonviral vectors. In this review, we summarize recent advances of existing and emerging nonviral vector-based nanotechnologies for IVT-mRNA delivery and briefly summarize the interesting but rarely discussed applications on simultaneous delivery of IVT-mRNA with DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kormann MSD, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011; 29: 154–157.

    CAS  PubMed  Google Scholar 

  2. Wu X, Brewer G . The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012; 500: 10–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Karikó K, Muramatsu H, Keller JM, Weissman D . Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012; 20: 948–953.

    PubMed  PubMed Central  Google Scholar 

  4. Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013; 31: 898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karikó K, Kuo A, Barnathan E . Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Therapy 1999; 6: 1092–1100.

    PubMed  Google Scholar 

  6. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108: 4009–4017.

    CAS  PubMed  Google Scholar 

  7. Kallen K-J, Theß A . A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2014; 2: 10–31.

    PubMed  PubMed Central  Google Scholar 

  8. Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D, Karikó K . Nucleoside modifications in RNA limit activation of 2’-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res 2011; 39: 9329–9338.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Karikó K, Buckstein M, Ni H, Weissman D . Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23: 165–175.

    PubMed  Google Scholar 

  10. DeRosa F, Guild B, Karve S, Smith L, Love K, Dorkin JR et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Therapy 2016; 23: 699–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011; 19: 990–999.

    CAS  PubMed  Google Scholar 

  12. Wilgenhof S, Van Nuffel AMT, Benteyn D, Corthals J, Aerts C, Heirman C et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 2013; 24: 2686–2693.

    CAS  PubMed  Google Scholar 

  13. Kreiter S, Diken M, Selmi A, Türeci Ö, Sahin U . Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 2011; 23: 399–406.

    CAS  PubMed  Google Scholar 

  14. Sahin U, Karikó K, Türeci Ö . mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov 2014; 13: 759–780.

    Article  CAS  PubMed  Google Scholar 

  15. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG . Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15: 541–555.

    CAS  PubMed  Google Scholar 

  16. Lundstrom K, Boulikas T . Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2003; 2: 471–486.

    CAS  PubMed  Google Scholar 

  17. Romano G, Pacilio C, Giordano A . Gene transfer technology in therapy: current applications and future goals. Stem Cells 1999; 17: 191–202.

    CAS  PubMed  Google Scholar 

  18. Chowdhury EH . Nuclear targeting of viral and non-viral DNA. Expert Opin Drug Deliv 2009; 6: 697–703.

    CAS  PubMed  Google Scholar 

  19. Romano G, Michell P, Pacilio C, Giordano A . Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18: 19–39.

    CAS  PubMed  Google Scholar 

  20. Van Tendeloo VF, Snoeck HW, Lardon F, Vanham GL, Nijs G, Lenjou M et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells. Gene Therapy 1998; 5: 700–707.

    CAS  PubMed  Google Scholar 

  21. Geng T, Zhan Y, Wang J, Lu C . Transfection of cells using flow-through electroporation based on constant voltage. Nat Protoc 2011; 6: 1192–1208.

    CAS  PubMed  Google Scholar 

  22. De Temmerman M-L, Dewitte H, Vandenbroucke RE, Lucas B, Libert C, Demeester J et al. mRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 2011; 32: 9128–9135.

    CAS  PubMed  Google Scholar 

  23. Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 2002; 9: 787–797.

    CAS  PubMed  Google Scholar 

  24. Dewitte H, Van Lint S, Heirman C, Thielemans K, De Smedt SC, Breckpot K et al. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J Control Release 2014; 194: 28–36.

    CAS  PubMed  Google Scholar 

  25. Agapov E V, Frolov I, Lindenbach BD, Prágai BM, Schlesinger S, Rice CM . Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA 1998; 95: 12989–12994.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrari S, Griesenbach U, Shiraki-Iida T, Shu T, Hironaka T, Hou X et al. A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Therapy 2004; 11: 1659–1664.

    CAS  PubMed  Google Scholar 

  27. Bitzer M, Armeanu S, Lauer UM, Neubert WJ . Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 2003; 5: 543–553.

    CAS  PubMed  Google Scholar 

  28. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    CAS  PubMed  Google Scholar 

  29. Kanasty R, Dorkin JR, Vegas A, Anderson D . Delivery materials for siRNA therapeutics. Nat Mater 2013; 12: 967–977.

    CAS  PubMed  Google Scholar 

  30. Weide B, Carralot J-P, Reese A, Scheel B, Eigentler TK, Hoerr I et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 2008; 31: 180–188.

    CAS  PubMed  Google Scholar 

  31. Midoux P, Pichon C . Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines 2015; 14: 221–234.

    CAS  PubMed  Google Scholar 

  32. Yamamoto A, Kormann M, Rosenecker J, Rudolph C . Current prospects for mRNA gene delivery. Eur J Pharm Biopharm 2009; 71: 484–489.

    CAS  PubMed  Google Scholar 

  33. Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J . mRNA as gene therapeutic: how to control protein expression. J Control Release 2011; 150: 238–247.

    CAS  PubMed  Google Scholar 

  34. Wang W, Li W, Ma N, Steinhoff G . Non-viral gene delivery methods. Curr Pharm Biotechnol 2013; 14: 46–60.

    CAS  PubMed  Google Scholar 

  35. Schott JW, Galla M, Godinho T, Baum C, Schambach A . Viral and non-viral approaches for transient delivery of mRNA and proteins. Curr Gene Ther 2011; 11: 382–398.

    CAS  PubMed  Google Scholar 

  36. Zou S, Scarfo K, Nantz MH, Hecker JG . Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm 2010; 389: 232–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rejman J, Tavernier G, Bavarsad N, Demeester J, De Smedt SC . mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers. J Control Release 2010; 147: 385–391.

    CAS  PubMed  Google Scholar 

  38. Malone RW, Felgner PL, Verma IM . Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 1989; 86: 6077–6081.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T . Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Commun 2007; 358: 373–378.

    CAS  PubMed  Google Scholar 

  40. Lu D, Benjamin R, Kim M, Conry RM, Curiel DT . Optimization of methods to achieve mRNA-mediated transfection of tumor cells in vitro and in vivo employing cationic liposome vectors. Cancer Gene Ther 1994; 1: 245–252.

    CAS  PubMed  Google Scholar 

  41. Zohra FT, Chowdhury EH, Nagaoka M, Akaike T . Drastic effect of nanoapatite particles on liposome-mediated mRNA delivery to mammalian cells. Analyt Biochem 2005; 345: 164–166.

    CAS  PubMed  Google Scholar 

  42. Zohra FT, Chowdhury EH, Akaike T . High performance mRNA transfection through carbonate apatite-cationic liposome conjugates. Biomaterials 2009; 30: 4006–4013.

    CAS  PubMed  Google Scholar 

  43. Zohra FT, Maitani Y, Akaike T . mRNA delivery through fibronectin associated liposome-apatite particles: a new approach for enhanced mRNA transfection to mammalian cell. Biol Pharm Bull 2012; 35: 111–115.

    CAS  PubMed  Google Scholar 

  44. Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, DeRosa F, Mir FF et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett 2015; 15: 7300–7306.

    CAS  PubMed  Google Scholar 

  45. Koltover I, Salditt T, Rädler JO, Safinya CR . An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998; 281: 78–81.

    CAS  PubMed  Google Scholar 

  46. Wasungu L, Hoekstra D . Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116: 255–264.

    CAS  PubMed  Google Scholar 

  47. Tros de Ilarduya C, Arangoa MA, Düzgüneş N . Transferrin-lipoplexes with protamine-condensed DNA for serum-resistant gene delivery. Methods Enzymol 2003; 373: 342–356.

    CAS  PubMed  Google Scholar 

  48. Wolff JA, Rozema DB . Breaking the bonds: non-viral vectors become chemically dynamic. Mol Ther 2008; 16: 8–15.

    CAS  PubMed  Google Scholar 

  49. Bao Y, Jin Y, Chivukula P, Zhang J, Liu Y, Liu J et al. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm Res 2013; 30: 342–351.

    CAS  PubMed  Google Scholar 

  50. Immordino ML, Dosio F, Cattel L . Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1: 297–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Su H-H, Yang Y, Hu Y, Zhang L, Blancafort P et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 2013; 21: 358–367.

    CAS  PubMed  Google Scholar 

  52. Balmayor ER, Geiger JP, Aneja MK, Berezhanskyy T, Utzinger M, Mykhaylyk O et al. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016; 87: 131–146.

    CAS  PubMed  Google Scholar 

  53. Johler SM, Rejman J, Guan S, Rosenecker J . Nebulisation of IVT mRNA complexes for intrapulmonary administration. PLoS ONE 2015; 10: e0137504.

    PubMed  PubMed Central  Google Scholar 

  54. Kauffman KJ, Webber MJ, Anderson DG . Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release 2015; 240: 227–234.

    PubMed  Google Scholar 

  55. Griesenbach U, Alton EWFW . Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61: 128–139.

    CAS  PubMed  Google Scholar 

  56. Griesenbach U, Meng C, Farley R, Cheng SH, Scheule RK, Davies MH et al. in vivo imaging of gene transfer to the respiratory tract. Biomaterials 2008; 29: 1533–1540.

    CAS  PubMed  Google Scholar 

  57. Alton EWFW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield E V et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 2015; 3: 684–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruiz FE, Clancy JP, Perricone MA, Bebok Z, Hong JS, Cheng SH et al. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther 2001; 12: 751–761.

    CAS  PubMed  Google Scholar 

  59. Andries O, De Filette M, De Smedt SC, Demeester J, Poucke M, Van, Peelman L et al. Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells. J Control Release 2013; 167: 157–166.

    CAS  PubMed  Google Scholar 

  60. Heyes J, Palmer L, Bremner K, MacLachlan I . Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. Jo Control Release 2005; 107: 276–287.

    CAS  Google Scholar 

  61. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 2012; 109: 14604–14609.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA et al. Rapidly produced SAM(®) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2013; 2: e52.

    PubMed  PubMed Central  Google Scholar 

  63. Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release 2015; 217: 345–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Thess A, Grund S, Mui BL, Hope MJ, Baumhof P, Fotin-Mleczek M et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 2015; 23: 1456–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 2014; 5: 4277.

    CAS  PubMed  Google Scholar 

  66. Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natil Acad Sci USA 2014; 111: 3955–3960.

    CAS  Google Scholar 

  67. Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34: 328–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Turnbull IC, Eltoukhy AA, Fish KM, Nonnenmacher M, Ishikawa K, Chen J et al. Myocardial delivery of lipidoid nanoparticle carrying modrna induces rapid and transient expression. Mol Ther 2016; 24: 66–75.

    CAS  PubMed  Google Scholar 

  69. Fenton OS, Kauffman KJ, McClellan RL, Appel EA, Dorkin JR, Tibbitt MW et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv Mater 2016; 28: 2939–2943.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010; 28: 172–176.

    CAS  PubMed  Google Scholar 

  71. Li B, Luo X, Deng B, Giancola JB, McComb DW, Schmittgen TD et al. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci Rep 2016; 6: 22137.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dong Y, Eltoukhy AA, Alabi CA, Khan OF, Veiseh O, Dorkin JR et al. Lipid-like nanomaterials for simultaneous gene expression and silencing in vivo. Adv Healthc Mater 2014; 3: 1392–1397.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 2013; 31: 638–646.

    CAS  PubMed  Google Scholar 

  74. Wittrup A, Ai A, Liu X, Hamar P, Trifonova R, Charisse K et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol 2015; 33: 870–876.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem 2012; 124: 8657–8661.

    Google Scholar 

  76. Jarzębińska A, Pasewald T, Lambrecht J, Mykhaylyk O, Kümmerling L, Beck P et al. A single methylene group in oligoalkylamine-based cationic polymers and lipids promotes enhanced mRNA delivery. Angew Chem Int Ed Engl 2016; 55: 9591–9595.

    PubMed  Google Scholar 

  77. Habrant D, Peuziat P, Colombani T, Dallet L, Gehin J, Goudeau E et al. Design of ionizable lipids to overcome the limiting step of endosomal escape: application in the intracellular delivery of mRNA, DNA, and siRNA. J Med Chem 2016; 59: 3046–3062.

    CAS  PubMed  Google Scholar 

  78. Lächelt U, Wagner E . Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 2015; 115: 11043–11078.

    PubMed  Google Scholar 

  79. Koch G . Interaction of poliovirus-specific RNAs with HeLa cells and E. coli. Curr Top Microbiol Immunol 1973; 62: 89–138.

    CAS  PubMed  Google Scholar 

  80. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW . Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res 2001; 29: 3882–3891.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Uchida H, Itaka K, Nomoto T, Ishii T, Suma T, Ikegami M et al. Modulated protonation of side chain aminoethylene repeats in N-substituted polyaspartamides promotes mRNA transfection. J Am Chem Soc 2014; 136: 12396–12405.

    CAS  PubMed  Google Scholar 

  82. Uchida H, Miyata K, Oba M, Ishii T, Suma T, Itaka K et al. Odd-even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles. J Am Chem Soc 2011; 133: 15524–15532.

    CAS  PubMed  Google Scholar 

  83. Itaka K, Ishii T, Hasegawa Y, Kataoka K . Biodegradable polyamino acid-based polycations as safe and effective gene carrier minimizing cumulative toxicity. Biomaterials 2010; 31: 3707–3714.

    CAS  PubMed  Google Scholar 

  84. Uchida S, Itaka K, Uchida H, Hayakawa K, Ogata T, Ishii T et al. in vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS ONE 2013; 8: e56220.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Baba M, Itaka K, Kondo K, Yamasoba T, Kataoka K . Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J Control Release 2015; 201: 41–48.

    CAS  PubMed  Google Scholar 

  86. Uchida S, Kinoh H, Ishii T, Matsui A, Tockary TA, Takeda KM et al. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016; 82: 221–228.

    CAS  PubMed  Google Scholar 

  87. Xu FJ, Yang WT . Polymer vectors via controlled/living radical polymerization for gene delivery. Prog Polym Sci 2011; 36: 1099–1131.

    CAS  Google Scholar 

  88. Uzgün S, Nica G, Pfeifer C, Bosinco M, Michaelis K, Lutz J-F et al. PEGylation improves nanoparticle formation and transfection efficiency of messenger RNA. Pharm Res 2011; 28: 2223–2232.

    PubMed  Google Scholar 

  89. Cheng C, Convertine AJ, Stayton PS, Bryers JD . Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 2012; 33: 6868–6876.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Elangovan S, Khorsand B, Do A-V, Hong L, Dewerth A, Kormann M et al. Chemically modified RNA activated matrices enhance bone regeneration. J Control Release 2015; 218: 22–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li M, Zhao M, Fu Y, Li Y, Gong T, Zhang Z et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release 2016; 228: 9–19.

    CAS  PubMed  Google Scholar 

  92. Mao S, Sun W, Kissel T . Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 2010; 62: 12–27.

    CAS  PubMed  Google Scholar 

  93. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr C-M, Brewster LP et al. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine 2007; 3: 173–183.

    CAS  PubMed  Google Scholar 

  94. Mahiny AJ, Dewerth A, Mays LE, Alkhaled M, Mothes B, Malaeksefat E et al. in vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol 2015; 33: 584–586.

    CAS  PubMed  Google Scholar 

  95. Su X, Fricke J, Kavanagh DG, Irvine DJ . in vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 2011; 8: 774–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Perche F, Benvegnu T, Berchel M, Lebegue L, Pichon C, Jaffrès P-A et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011; 7: 445–453.

    CAS  PubMed  Google Scholar 

  97. Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L . Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir 2011; 27: 10556–10561.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Salvador-Morales C, Zhang L, Langer R, Farokhzad OC . Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 2009; 30: 2231–2240.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang L, Chan JM, Gu FX, Rhee J-W, Wang AZ, Radovic-Moreno AF et al. Self-assembled lipid—polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2008; 2: 1696–1702.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li S, Rizzo MA, Bhattacharya S, Huang L . Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Therapy 1998; 5: 930–937.

    CAS  PubMed  Google Scholar 

  101. Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996; 271: 8481–8487.

    CAS  PubMed  Google Scholar 

  102. Hoerr I, Obst R, Rammensee HG, Jung G . in vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000; 30: 1–7.

    CAS  PubMed  Google Scholar 

  103. Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri A, Lafosse S, Le Cam E et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 2007; 14: 802–814.

    CAS  PubMed  Google Scholar 

  104. Pichon C, Midoux P . Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA. Methods Mol Biol 2013; 969: 247–274.

    CAS  PubMed  Google Scholar 

  105. Lee K, Yu P, Lingampalli N, Kim HJ, Tang R, Murthy N . Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int J Nanomed 2015; 10: 1841–1854.

    CAS  Google Scholar 

  106. Bhavsar MD, Amiji MM . Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech 2008; 9: 288–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Palamà IE, Cortese B, D’Amone S, Gigli G . mRNA delivery using non-viral PCL nanoparticles. Biomater Sci 2015; 3: 144–151.

    PubMed  Google Scholar 

  108. Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 2014; 22: 2118–2129.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dong Y, Dorkin JR, Wang W, Chang PH, Webber MJ, Tang BC et al. Poly(glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano Lett 2016; 16: 842–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Podetz-Pedersen KM, Olson ER, Somia N V, Russell SJ, McIvor RS . A broad range of dose optima achieve high-level, long-term gene expression after hydrodynamic delivery of sleeping beauty transposons using hyperactive SB100x transposase. Mol Ther Nucleic Acids 2016; 5: e279.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM et al. Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 2002; 99: 4495–4499.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wilber A, Frandsen JL, Geurts JL, Largaespada DA, Hackett PB, McIvor RS . RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther 2006; 13: 625–630.

    CAS  PubMed  Google Scholar 

  113. Suster ML, Sumiyama K, Kawakami K . Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 2009; 10: 477.

    PubMed  PubMed Central  Google Scholar 

  114. Sumiyama K, Kawakami K, Yagita K . A simple and highly efficient transgenesis method in mice with the Tol2 transposon system and cytoplasmic microinjection. Genomics 2010; 95: 306–311.

    CAS  PubMed  Google Scholar 

  115. Furushima K, Jang C-W, Chen DW, Xiao N, Overbeek PA, Behringer RR . Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics 2012; 192: 1235–1248.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bire S, Gosset D, Jégot G, Midoux P, Pichon C, Rouleux-Bonnin F . Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol 2013; 13: 75.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E . Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy 2000; 7: 401–407.

    CAS  PubMed  Google Scholar 

  118. Farrow PJ, Barrett LB, Stevenson M, Fisher KD, Finn J, Spice R et al. Cytoplasmic expression systems triggered by mRNA yield increased gene expression in post-mitotic neurons. Nucleic Acids Res 2006; 34: e80.

    PubMed  PubMed Central  Google Scholar 

  119. Ghosh P, Han G, De M, Kim CK, Rotello VM . Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60: 1307–1315.

    CAS  PubMed  Google Scholar 

  120. Kim J-H, Jang HH, Ryou S-M, Kim S, Bae J, Lee K et al. A functionalized gold nanoparticles-assisted universal carrier for antisense DNA. Chem Commun(Camb) 2010; 46: 4151–4153.

    CAS  Google Scholar 

  121. Yeom J-H, Ryou S-M, Won M, Park M, Bae J, Lee K . Inhibition of xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA. PLoS ONE 2013; 8: e75369.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Shan Guan gratefully acknowledges receiving a fellowship from China Scholarship Council to support his PhD study at Ludwig-Maximilians-University Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Rosenecker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 24, 133–143 (2017). https://doi.org/10.1038/gt.2017.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.5

This article is cited by

Search

Quick links