Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel intranuclear RNA vector system for long-term stem cell modification

Abstract

Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells, while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (New York, NY) 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (New York, NY) 2000; 288: 669–672.

    Article  CAS  Google Scholar 

  3. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  4. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, Glimm H et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischer A, Hacein-Bey S, Le Deist F, Soudais C, Di Santo JP, de Saint Basile G et al. Gene therapy of severe combined immunodeficiencies. Immunol Rev 2000; 178: 13–20.

    Article  CAS  PubMed  Google Scholar 

  6. Chinen J, Davis J, De Ravin SS, Hay BN, Hsu AP, Linton GF et al. Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency. Blood 2007; 110: 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010; 363: 355–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA . Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001; 75: 6969–6976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hatalski CG, Lewis AJ, Lipkin WI . Borna disease. Emerg Infect Dis 1997; 3: 129–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rott R, Becht H . Natural and experimental Borna disease in animals. Curr Top Microbiol Immunol 1995; 190: 17–30.

    CAS  PubMed  Google Scholar 

  11. Hornig M, Briese T, Licinio J, Khabbaz RF, Altshuler LL, Potkin SG et al. Absence of evidence for bornavirus infection in schizophrenia, bipolar disorder and major depressive disorder. Mol Psychiatry 2012; 17: 486–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffmann B, Tappe D, Hoper D, Herden C, Boldt A, Mawrin C et al. A variegated squirrel bornavirus associated with fatal human encephalitis. N Engl J Med 2015; 373: 154–162.

    Article  CAS  PubMed  Google Scholar 

  13. de la Torre JC . Molecular biology of borna disease virus: prototype of a new group of animal viruses. J Virol 1994; 68: 7669–7675.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Briese T, de la Torre JC, Lewis A, Ludwig H, Lipkin WI . Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci USA 1992; 89: 11486–11489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Briese T, Schneemann A, Lewis AJ, Park YS, Kim S, Ludwig H et al. Genomic organization of Borna disease virus. Proc Natl Acad Sci USA 1994; 91: 4362–4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneemann A, Schneider PA, Lamb RA, Lipkin WI . The remarkable coding strategy of borna disease virus: a new member of the nonsegmented negative strand RNA viruses. Virology 1995; 210: 1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cubitt B, Oldstone C, Valcarcel J, Carlos de la Torre J . RNA splicing contributes to the generation of mature mRNAs of Borna disease virus, a non-segmented negative strand RNA virus. Virus Res 1994; 34: 69–79.

    Article  CAS  PubMed  Google Scholar 

  18. Matsumoto Y, Hayashi Y, Omori H, Honda T, Daito T, Horie M et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host Microbe 2012; 11: 492–503.

    Article  CAS  PubMed  Google Scholar 

  19. Ludwig H, Bode L, Gosztonyi G . Borna disease: a persistent virus infection of the central nervous system. Prog Med Virol 1988; 35: 107–151.

    CAS  PubMed  Google Scholar 

  20. Sierra-Honigmann AM, Rubin SA, Estafanous MG, Yolken RH, Carbone KM . Borna disease virus in peripheral blood mononuclear and bone marrow cells of neonatally and chronically infected rats. J Neuroimmunol 1993; 45: 31–36.

    Article  CAS  PubMed  Google Scholar 

  21. Schneider U, Ackermann A, Staeheli P . A borna disease virus vector for expression of foreign genes in neurons of rodents. J Virol 2007; 81: 7293–7296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daito T, Fujino K, Honda T, Matsumoto Y, Watanabe Y, Tomonaga K . A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol 2011; 85: 12170–12178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ackermann A, Guelzow T, Staeheli P, Schneider U, Heimrich B . Visualizing viral dissemination in the mouse nervous system, using a green fluorescent protein-expressing Borna disease virus vector. J Virol 2010; 84: 5438–5442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014; 383: 1138–1146.

    Article  CAS  PubMed  Google Scholar 

  25. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science (New York, NY) 2013; 341: 1233158.

    Article  Google Scholar 

  26. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science (New York, NY) 2013; 341: 1233151.

    Article  Google Scholar 

  27. Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM . Gene therapy: therapeutic gene causing lymphoma. Nature 2006; 440: 1123.

    Article  CAS  PubMed  Google Scholar 

  28. Ginn SL, Liao SH, Dane AP, Hu M, Hyman J, Finnie JW et al. Lymphomagenesis in SCID-X1 mice following lentivirus-mediated phenotype correction independent of insertional mutagenesis and gammac overexpression. Mol Ther 2010; 18: 965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  PubMed  Google Scholar 

  30. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29: 143–148.

    Article  CAS  PubMed  Google Scholar 

  31. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 2013; 339: 819–823.

    Article  CAS  Google Scholar 

  32. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE . Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 1997; 186: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brnic D, Stevanovic V, Cochet M, Agier C, Richardson J, Montero-Menei CN et al. Borna disease virus infects human neural progenitor cells and impairs neurogenesis. J Virol 2012; 86: 2512–2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kamitani W, Shoya Y, Kobayashi T, Watanabe M, Lee BJ, Zhang G et al. Borna disease virus phosphoprotein binds a neurite outgrowth factor, amphoterin/HMG-1. J Virol 2001; 75: 8742–8751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang G, Kobayashi T, Kamitani W, Komoto S, Yamashita M, Baba S et al. Borna disease virus phosphoprotein represses p53-mediated transcriptional activity by interference with HMGB1. J Virol 2003; 77: 12243–12251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Habjan M, Andersson I, Klingstrom J, Schumann M, Martin A, Zimmermann P et al. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PloS One 2008; 3: e2032.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wensman JJ, Munir M, Thaduri S, Hornaeus K, Rizwan M, Blomstrom AL et al. The X proteins of bornaviruses interfere with type I interferon signalling. J Gen Virol 2013; 94 (Pt 2): 263–269.

    Article  CAS  PubMed  Google Scholar 

  38. Fujino K, Horie M, Honda T, Merriman DK, Tomonaga K . Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc Natl Acad Sci USA 2014; 111: 13175–13180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 2010; 463: 84–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Belyi VA, Levine AJ, Skalka AM . Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog 2010; 6: e1001030.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Katzourakis A, Gifford RJ . Endogenous viral elements in animal genomes. PLoS Genet 2010; 6: e1001191.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Horie M, Tomonaga K . Non-retroviral fossils in vertebrate genomes. Viruses 2011; 3: 1836–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horie M, Kobayashi Y, Suzuki Y, Tomonaga K . Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20120499.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Strang BL, Ikeda Y, Cosset FL, Collins MK, Takeuchi Y . Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Therapy 2004; 11: 591–598.

    Article  CAS  PubMed  Google Scholar 

  45. Kao M, Ludwig H, Gosztonyi G . Adaptation of Borna disease virus to the mouse. J Gen Virol 1984; 65 (Pt 10): 1845–1849.

    Article  PubMed  Google Scholar 

  46. Ackermann A, Staeheli P, Schneider U . Adaptation of Borna disease virus to new host species attributed to altered regulation of viral polymerase activity. J Virol 2007; 81: 7933–7940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikeda Y, Collins MK, Radcliffe PA, Mitrophanous KA, Takeuchi Y . Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Therapy 2002; 9: 932–938.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson TJ, Martinez-Fernandez A, Yamada S, Mael AA, Terzic A, Ikeda Y . Induced pluripotent reprogramming from promiscuous human stemness related factors. Clin Transl Sci 2009; 2: 118–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG et al. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 2012; 1: 451–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crespo-Diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J et al. Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transplant 2011; 20: 797–811.

    Article  PubMed  Google Scholar 

  51. Yanai H, Hayashi Y, Watanabe Y, Ohtaki N, Kobayashi T, Nozaki Y et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect 2006; 8: 1522–1529.

    Article  CAS  PubMed  Google Scholar 

  52. Thatava T, Kudva YC, Edukulla R, Squillace K, De Lamo JG, Khan YK et al. Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther 2013; 21: 228–239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Mayo Foundation, Mayo Clinic Center for Regenerative Medicine, Eisenberg Stem Cell Trust and National Institutes of Health (R01HL098502) to YI; and Funding Program for Next Generation World-Leading Researchers (NEXT program) from Japan Society for the Promotion of Science (JSPS) to KT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Ikeda or K Tomonaga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, Y., Makino, A., Matchett, W. et al. A novel intranuclear RNA vector system for long-term stem cell modification. Gene Ther 23, 256–262 (2016). https://doi.org/10.1038/gt.2015.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.108

This article is cited by

Search

Quick links