Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene transfer of two entry inhibitors protects CD4+ T cell from HIV-1 infection in humanized mice

Abstract

Targeting viral entry is the most likely gene therapy strategy to succeed in protecting the immune system from pathogenic HIV-1 infection. Here, we evaluated the efficacy of a gene transfer lentiviral vector expressing a combination of viral entry inhibitors, the C46 peptide (an inhibitor of viral fusion) and the P2-CCL5 intrakine (a modulator of CCR5 expression), to prevent CD4+ T-cell infection in vivo. For this, we used two different models of HIV-1-infected mice, one in which ex vivo genetically modified human T cells were grafted into immunodeficient NOD.SCID.γc−/− mice before infection and one in which genetically modified T cells were derived from CD34+ hematopoietic progenitors grafted few days after birth. Expression of the transgenes conferred a major selective advantage to genetically modified CD4+ T cells, the frequency of which could increase from 10 to 90% in the blood following HIV-1 infection. Moreover, these cells resisted HIV-1-induced depletion, contrary to non-modified cells that were depleted in the same mice. Finally, we report lower normalized viral loads in mice having received genetically modified progenitors. Altogether, our study documents that targeting viral entry in vivo is a promising avenue for the future of HIV-1 gene therapy in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB . Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 1997; 16: 100–103.

    Article  CAS  PubMed  Google Scholar 

  2. Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 2011; 117: 2791–2799.

    Article  CAS  PubMed  Google Scholar 

  3. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28: 839–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, Danet-Desnoyers GA et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 2014; 123: 61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26: 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peterson CW, Younan P, Jerome KR, Kiem H-P . Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther 2013; 20: 695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colin P, Bénureau Y, Staropoli I, Wang Y, Gonzalez N, Alcami J et al. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. Proc Natl Acad Sci USA 2013; 110: 9475–9480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenberg ML, Cammack N . Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 2004; 54: 333–340.

    Article  CAS  PubMed  Google Scholar 

  10. Von Laer D, Hasselmann S, Hasselmann K . Gene therapy for HIV infection: what does it need to make it work? J Gene Med 2006; 8: 658–667.

    Article  CAS  PubMed  Google Scholar 

  11. Doitsh G, Galloway NLK, Geng X, Yang Z, Monroe KM, Zepeda O et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505: 509–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heredia A, Gilliam B, DeVico A, Le N, Bamba D, Flinko R et al. CCR5 density levels on primary CD4 T cells impact the replication and Enfuvirtide susceptibility of R5 HIV-1. Aids 2007; 21: 1317–1322.

    Article  PubMed  Google Scholar 

  13. Anastassopoulou CG, Ketas TJ, Sanders RW, Klasse PJ, Moore JP . Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance. Virology 2012; 428: 86–97.

    Article  CAS  PubMed  Google Scholar 

  14. Petit N, Dorgham K, Levacher B, Burlion A, Gorochov G, G Marodon . Targeting both viraland host determinants of human immunodeficiency virus entry, using a new lentiviral vector coexpressing the T20 fusion inhibitor and a selective CCL5 intrakine. Hum Gene Ther Methods 2014; 25: 232–240.

    Article  CAS  PubMed  Google Scholar 

  15. Hartley O, Dorgham K, Perez-Bercoff D, Cerini F, Heimann A, Gaertner H et al. Human immunodeficiency virus type 1 entry inhibitors selected on living cells from a library of phage chemokines. J Virol 2003; 77: 6637–6644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schroers R, Davis CM, Wagner HJ, Chen SY . Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther 2002; 9: 889–897.

    Article  CAS  PubMed  Google Scholar 

  17. Egelhofer M, Brandenburg G, Martinius H, Schult-Dietrich P, Melikyan G, Kunert R et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004; 78: 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimpel J, Braun SE, Qiu G, Wong FE, Conolle M, Schmitz JE et al. Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection. PLoS One 2010; 5: e12357.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burke BP, Levin BR, Zhang J, Sahakyan A, Boyer J, Carroll MV et al. Engineering cellular resistance to HIV-1 infection in vivo using a dual therapeutic lentiviral vector. Mol Ther Acids 2015; 4: e236.

    Article  CAS  Google Scholar 

  20. Trobridge GD, Wu RA, Beard BC, Chiu SY, Muñoz NM, von Laer D et al. Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PLoS One 2009; 4: e7693.

    Article  PubMed  PubMed Central  Google Scholar 

  21. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157: 104–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Younan PM, Polacino P, Kowalski JP, Peterson CW, Maurice NJ, Williams NP et al. Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood 2013; 122: 179–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimizu S, Ringpis G-E, Marsden MD, Cortado RV, Wilhalme HM, Elashoff D et al. RNAi-mediated CCR5 knockdown provides HIV-1 resistance to memory T cells in humanized BLT mice. Mol Ther Nucleic Acids 2015; 4: e227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Myburgh R, Ivic S, Pepper MS, Gers-Huber G, Li D, Audigé A et al. Lentivector knock-down of CCR5 in hematopoietic stem cells confers functional and persistent HIV-1 resistance in humanized mice. J Virol 2015; 89: 6761–6772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walker JE, Chen RX, McGee J, Nacey C, Pollard RB, Abedi M et al. Generation of an HIV-1-resistant immune system with CD34+ hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. J Virol 2012; 86: 5719–5729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Ravin SS, Gray JT, Throm RE, Spindler J, Kearney M, Wu X et al. False-positive HIV PCR test following ex vivo lentiviral gene transfer treatment of X-linked severe combined immunodeficiency vector. Mol Ther 2014; 22: 244–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abarrategui-Pontes C, Créneguy A, Thinard R, Fine EJ, Thepenier V, Fournier LRL et al. Codon swapping of zinc finger nucleases confers expression in primary cells and in vivo from a single lentiviral vector. Curr Gene Ther 2014; 14: 365–376.

    Article  PubMed  Google Scholar 

  28. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010; 2: 36ra43.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Podsakoff GM, Engel BC, Carbonaro DA, Choi C, Smogorzewska EM, Bauer G et al. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34+ cells. Mol Ther 2005; 12: 77–86.

    Article  CAS  PubMed  Google Scholar 

  30. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 98: 9873–9880.

    Google Scholar 

  31. Marodon G, Mouly E, Blair EJ, Frisen C, Lemoine FM, Klatzmann D . Specific transgene expression in human and mouse CD4+ cells using lentiviral vectors with regulatory sequences from the CD4 gene. Blood 2003; 101: 3416–3423.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Agence Nationale de la Recherche contre le SIDA (ANRS) to Guy Gorochov and Gilles Marodon. NYP was supported by a doctoral fellowship from Fond Pierre Bergé/SIDAction and by the ANRS. We thank David Klatzmann (INSERM U959, Paris, France) for his initial support on this project, Dorothée van Laer (Innsbruck University, Austria) for the kind gift of the C46 peptide, Arnaud Moris (CIMI-PARIS, France) for the kind gift of NL-AD8 HIV-1 strain, Dr Hans Yssel (CIMI-PARIS) for performing Hoechst-based detection test of mycoplasma.

Author contributions

NYP, CB, AB and GM performed experiments; BL constructed the vectors; CA and VS performed HIV-1 qPCR; KD, FML and GG conceived experiments, contributed to essential reagents and corrected the manuscript; NYP and GM conceived experiments, analyzed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Marodon.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, N., Baillou, C., Burlion, A. et al. Gene transfer of two entry inhibitors protects CD4+ T cell from HIV-1 infection in humanized mice. Gene Ther 23, 144–150 (2016). https://doi.org/10.1038/gt.2015.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.101

This article is cited by

Search

Quick links