Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hyaluronic acid pretreatment for Sendai virus-mediated cochlear gene transfer

Abstract

Gene therapy with viral vectors is one of the most promising strategies for sensorineural hearing loss. However, safe and effective administration of the viral vector into cochlear tissue is difficult because of the anatomical isolation of the cochlea. We investigated the efficiency and safety of round window membrane (RWM) application of Sendai virus, one of the most promising non-genotoxic vectors, after pretreatment with hyaluronic acid (HA) on the RWM to promote efficient viral translocation into the cochlea. Sendai virus expressing the green fluorescent protein reporter gene was detected throughout cochlear tissues following application combined with HA pretreatment. Quantitative analysis revealed that maximum expression was reached 3 days after treatment. The efficiency of transgene expression was several 100-fold greater with HA pretreatment than that without. Furthermore, unlike the conventional intracochlear delivery methods, this approach did not cause hearing loss. These findings reveal the potential utility of gene therapy with Sendai virus and HA for treatment of sensorineural hearing loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hudspeth AJ . How hearing happens. Neuron 1997; 19: 947–950.

    Article  CAS  PubMed  Google Scholar 

  2. Roberson DW, Rubel EW . Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 1994; 15: 28–34.

    CAS  PubMed  Google Scholar 

  3. Spoendlin H . Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 1975; 79: 266–275.

    Article  CAS  PubMed  Google Scholar 

  4. Duan M, Venail F, Spencer N, Mezzina M . Treatment of peripheral sensorineural hearing loss: gene therapy. Gene Ther 2004; 11 (Suppl 1): S51–S56.

    Article  CAS  PubMed  Google Scholar 

  5. Kesser BW, Lalwani AK . Gene therapy and stem cell transplantation: strategies for hearing restoration. Adv Otorhinolaryngol 2009; 66: 64–86.

    CAS  PubMed  Google Scholar 

  6. Luebke AE, Rova C, Von Doersten PG, Poulsen DJ . Adenoviral and AAV-mediated gene transfer to the inner ear: role of serotype, promoter, and viral load on in vivo and in vitro infection efficiencies. Adv Otorhinolaryngol 2009; 66: 87–98.

    CAS  PubMed  Google Scholar 

  7. Kawamoto K, Sha SH, Minoda R, Izumikawa M, Kuriyama H, Schacht J et al. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther 2004; 9: 173–181.

    Article  CAS  PubMed  Google Scholar 

  8. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11: 271–276.

    Article  CAS  PubMed  Google Scholar 

  9. Fukui H, Wong HT, Beyer LA, Case BG, Swiderski DL, Di Polo A et al. BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4f3 mutant mice. Sci Rep 2012; 2: 838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 2012; 75: 283–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raphael Y, Frisancho JC, Roessler BJ . Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 1996; 207: 137–141.

    Article  CAS  PubMed  Google Scholar 

  12. Praetorius M, Brough DE, Hsu C, Plinkert PK, Pfannenstiel SC, Staecker H . Adenoviral vectors for improved gene delivery to the inner ear. Hear Res 2009; 248: 31–38.

    Article  CAS  PubMed  Google Scholar 

  13. Derby ML, Sena-Esteves M, Breakefield XO, Corey DP . Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hear Res 1999; 134: 1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Han JJ, Mhatre AN, Wareing M, Pettis R, Gao WQ, Zufferey RN et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther 1999; 10: 1867–1873.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Okada T, Sheykholeslami K, Shimazaki K, Nomoto T, Muramatsu S et al. Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther 2005; 12: 725–733.

    Article  CAS  PubMed  Google Scholar 

  16. Kilpatrick LA, Li Q, Yang J, Goddard JC, Fekete DM, Lang H . Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Therapy 2011; 18: 569–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inoue M, Tokusumi Y, Ban H, Shirakura M, Kanaya T, Yoshizaki M et al. Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 2004; 6: 1069–1081.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshizaki M, Hironaka T, Iwasaki H, Ban H, Tokusumi Y, Iida A et al. Naked Sendai virus vector lacking all of the envelope-related genes: reduced cytopathogenicity and immunogenicity. J Gene Med 2006; 8: 1151–1159.

    Article  CAS  PubMed  Google Scholar 

  19. Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T et al. A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-to-cell spreading. J Virol 2003; 77: 6419–6429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y et al. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 2000; 74: 6564–6569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Agrup C, Gleeson M, Rudge P . The inner ear and the neurologist. J Neurol Neurosurg Psychiatry 2007; 78: 114–122.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kanzaki S, Shiotani A, Inoue M, Hasegawa M, Ogawa K . Sendai virus vector-mediated transgene expression in the cochlea in vivo. Audiol Neurootol 2007; 12: 119–126.

    Article  CAS  PubMed  Google Scholar 

  23. Rauch SD, Halpin CF, Antonelli PJ, Babu S, Carey JP, Gantz BJ et al. Oral vs intratympanic corticosteroid therapy for idiopathic sudden sensorineural hearing loss: a randomized trial. JAMA 2011; 305: 2071–2079.

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan DM, Hehar SS, Bance ML, Rutka JA . Intentional ablation of vestibular function using commercially available topical gentamicin-betamethasone eardrops in patients with Meniere's disease: further evidence for topical eardrop ototoxicity. Laryngoscope 2002; 112: 689–695.

    Article  CAS  PubMed  Google Scholar 

  25. Stover T, Yagi M, Raphael Y . Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res 1999; 136: 124–130.

    Article  CAS  PubMed  Google Scholar 

  26. Jero J, Mhatre AN, Tseng CJ, Stern RE, Coling DE, Goldstein JA et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther 2001; 12: 539–548.

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Murphy R, Taaffe D, Yin S, Xia L, Hauswirth WW et al. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Therapy 2012; 19: 255–263.

    Article  CAS  PubMed  Google Scholar 

  28. Shibata SB, Cortez SR, Wiler JA, Swiderski DL, Raphael Y . Hyaluronic acid enhances gene delivery into the cochlea. Hum Gene Ther 2012; 23: 302–310.

    Article  CAS  PubMed  Google Scholar 

  29. Luebke AE, Foster PK, Muller CD, Peel AL . Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum Gene Ther 2001; 12: 773–781.

    Article  CAS  PubMed  Google Scholar 

  30. Gao Y, Liu XL, Li XR . Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 2011; 6: 1017–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkinson PJ, Wise AK, Flynn BO, Nayagam BA, Richardson RT . Viability of long-term gene therapy in the cochlea. Sci Rep 2014; 4: 4733.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Geleoc GS, Holt JR . Sound strategies for hearing restoration. Science 2014; 344: 1241062.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suzuki M, Yamasoba T, Suzukawa K, Kaga K . Adenoviral vector gene delivery via the round window membrane in guinea pigs. Neuroreport 2003; 14: 1951–1955.

    Article  CAS  PubMed  Google Scholar 

  34. Borkholder DA, Zhu X, Frisina RD . Round window membrane intracochlear drug delivery enhanced by induced advection. J Control Release 2014; 174: 171–176.

    Article  CAS  PubMed  Google Scholar 

  35. Goycoolea MV, Muchow D, Schachern P . Experimental studies on round window structure: function and permeability. Laryngoscope 1988; 98: 1–20.

    Article  CAS  PubMed  Google Scholar 

  36. Goycoolea MV, Muchow DD, Sirvio LM, Winandy RM, Canafax DM, Hueb M . Extended middle ear drug delivery. A new concept; a new device. Acta Otolaryngol Suppl 1992; 493: 119–126.

    CAS  PubMed  Google Scholar 

  37. Markwell MA, Svennerholm L, Paulson JC . Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci USA 1981; 78: 5406–5410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santi PA, Mancini P, Barnes C . Identification and localization of the GM1 ganglioside in the cochlea using thin-layer chromatography and cholera toxin. J Histochem Cytochem 1994; 42: 705–716.

    Article  CAS  PubMed  Google Scholar 

  39. Goycoolea MV . Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol 2001; 121: 437–447.

    Article  CAS  PubMed  Google Scholar 

  40. Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE, Huang E et al. Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents. Otolaryngol Head Neck Surg 2000; 122: 521–528.

    CAS  PubMed  Google Scholar 

  41. Lehnhardt E . [Placement of intracochlear electrodes with Healon]. HNO 1992; 40: 86–89.

    CAS  PubMed  Google Scholar 

  42. Selivanova OA, Gouveris H, Victor A, Amedee RG, Mann W . Intratympanic dexamethasone and hyaluronic acid in patients with low-frequency and Meniere's-associated sudden sensorineural hearing loss. Otol Neurotol 2005; 26: 890–895.

    Article  PubMed  Google Scholar 

  43. Borden RC, Saunders JE, Berryhill WE, Krempl GA, Thompson DM, Queimado L . Hyaluronic acid hydrogel sustains the delivery of dexamethasone across the round window membrane. Audiol Neurootol 2011; 16: 1–11.

    Article  CAS  PubMed  Google Scholar 

  44. Friberg U, Erwall C, Bagger-Sjoback D, Rask-Andersen H . Hyaluronan content in human inner ear fluids. Acta Otolaryngol 1989; 108: 62–67.

    Article  CAS  PubMed  Google Scholar 

  45. Bjurstrom S, Slepecky N, Angelborg C . A histopathological study of the inner ear after the administration of hyaluronan into the middle ear of the guinea pig. Acta Otolaryngol Suppl 1987; 442: 62–65.

    Article  CAS  PubMed  Google Scholar 

  46. Bagger-Sjoback D, Holmquist J, Mendel L, Mercke U . Hyaluronic acid in middle ear surgery. Am J Otol 1993; 14: 501–506.

    CAS  PubMed  Google Scholar 

  47. Chen G, Zhang X, Yang F, Mu L . Disposition of nanoparticle-based delivery system via inner ear administration. Curr Drug Metab 2010; 11: 886–897.

    Article  CAS  PubMed  Google Scholar 

  48. Lee F, Kurisawa M . Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater 2013; 9: 5143–5152.

    Article  CAS  PubMed  Google Scholar 

  49. Burdick JA, Prestwich GD . Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011; 23: H41–H56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prestwich GD . Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 2011; 155: 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martens TF, Remaut K, Deschout H, Engbersen JF, Hennink WE, van Steenbergen MJ et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release 2015; 202: 83–92.

    Article  CAS  PubMed  Google Scholar 

  52. Kaneda Y . Improvements in gene therapy technologies. Mol Urol 2001; 5: 85–89.

    Article  CAS  PubMed  Google Scholar 

  53. Kim HS, Kim JS, Lee YK, Koo KH, Park YS . An efficient liposomal gene delivery vehicle using Sendai F/HN proteins and protamine. Cancer Gene Ther 2008; 15: 214–224.

    Article  CAS  PubMed  Google Scholar 

  54. Yin H, Zhao F, Zhang D, Li J . Hyaluronic acid conjugated beta-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int J Pharm 2015; 483: 169–179.

    Article  CAS  PubMed  Google Scholar 

  55. Wu HX, Shi HL, Wang YP, Jia XQ, Tang CZ, Zhang JM et al. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon 2014; 69: 379–389.

    Article  CAS  Google Scholar 

  56. Hertzano R, Puligilla C, Chan SL, Timothy C, Depireux DA, Ahmed Z et al. CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol 2010; 11: 407–418.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stone IM, Lurie DI, Kelley MW, Poulsen DJ . Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005; 11: 843–848.

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IA, James CD et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 2005; 23: 209–214.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang T, Wang CY, Zhang W, Gao YW, Yang ST, Wang TC et al. Generation and characterization of a fusion protein of single-chain fragment variable antibody against hemagglutinin antigen of avian influenza virus and truncated protamine. Vaccine 2010; 28: 3949–3955.

    Article  CAS  PubMed  Google Scholar 

  60. Yang X, Hu W, Li F, Xia H, Zhang Z . Gene cloning, bacterial expression, in vitro refolding, and characterization of a single-chain Fv antibody against PreS1(21-47) fragment of HBsAg. Protein Expr Purif 2005; 41: 341–348.

    Article  CAS  PubMed  Google Scholar 

  61. Tokusumi T, Iida A, Hirata T, Kato A, Nagai Y, Hasegawa M . Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 2002; 86: 33–38.

    Article  CAS  PubMed  Google Scholar 

  62. Gupta KC, Kingsbury DW . Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: homologies with the genome of vesicular stomatitis virus. Nucleic Acids Res 1984; 12: 3829–3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luk D, Masters PS, Gill DS, Banerjee AK . Intergenic sequences of the vesicular stomatitis virus genome (New Jersey serotype): evidence for two transcription initiation sites within the L gene. Virology 1987; 160: 88–94.

    Article  CAS  PubMed  Google Scholar 

  64. Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T et al. Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 1999; 73: 9237–9246.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Parker MA . Moving closer to a gene therapy for hearing loss. Hear J 2014; 67: 26–27.

    Google Scholar 

  66. Nakanishi M, Otsu M . Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr Gene Ther 2012; 12: 410–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yonemitsu Y, Matsumoto T, Itoh H, Okazaki J, Uchiyama M, Yoshida K et al. DVC1-0101 to treat peripheral arterial disease: a Phase I/IIa open-label dose-escalation clinical trial. Mol Ther 2013; 21: 707–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K et al. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 2002; 90: 966–973.

    Article  CAS  PubMed  Google Scholar 

  69. Fuerst TR, Niles EG, Studier FW, Moss B . Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 1986; 83: 8122–8126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hasan MK, Kato A, Shioda T, Sakai Y, Yu D, Nagai Y . Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3' proximal first locus. J Gen Virol 1997; 78: 2813–2820.

    Article  CAS  PubMed  Google Scholar 

  71. Kato A, Kiyotani K, Sakai Y, Yoshida T, Nagai Y . The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO J 1997; 16: 578–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizokami D, Araki K, Tanaka N, Suzuki H, Tomifuji M, Yamashita T et al. Sendai virus transgene in a novel gene therapy for laryngotracheal disease. Laryngoscope 2013; 123: 1717–1724.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26462572 (for KM).

Author contributions

TK and KM designed the experiments. TK, KM, KN, TF, MI, MH and AS performed research and analyzed the data. TK and KM co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Mizutari.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurioka, T., Mizutari, K., Niwa, K. et al. Hyaluronic acid pretreatment for Sendai virus-mediated cochlear gene transfer. Gene Ther 23, 187–195 (2016). https://doi.org/10.1038/gt.2015.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.94

This article is cited by

Search

Quick links