Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Tackling breast cancer chemoresistance with nano-formulated siRNA

Abstract

Breast cancer is the leading cancer diagnosed in women and the second leading cause of cancer-related deaths in women. Current limitations to standard chemotherapy in the clinic are extensively researched, including problems arising from repeated treatments with the same drugs. The phenomenon that cancer cells become resistant toward certain chemo drugs is called chemotherapy resistance. In this review, we are focusing on nanoformulation of siRNA for the fight against breast cancer chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. National Breast Cancer Foundation I. Breast Cancer Facts 2015. Available from http://www.nationalbreastcancer.org/breast-cancer-facts (accessed on 2 April 2016).

  2. Society AC. Breast Cancer Survival Rates, by stage 2016. Available from http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-survival-by-stage (accessed on 2 April 2016).

  3. Network MBC. Incidence and Incidence Rates 2016. Available from http://mbcn.org/education/category/incidence-and-incidence-rates (accessed on 29 March 2016).

  4. Perspectives K. Treatments for Metastatic Breast Cancer 2016. Available from http://ww5.komen.org/BreastCancer/RecommendedTreatmentsforMetastaticBreastCancer.html (accessed on 30 March 2016).

  5. Tsouris V, Joo MK, Kim SH, Kwon IC, Won YY . Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol Adv 2014; 32: 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  6. O'Reilly EA, Gubbins L, Sharma S, Tully R, Guang MH, Weiner-Gorzel K et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin 2015; 3: 257–275.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM . Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5: 219–234.

    Article  CAS  PubMed  Google Scholar 

  8. Creixell M, Peppas NA . Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today 2012; 7: 367–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Lu Z, Wientjes MG, Au JLS . Delivery of siRNA therapeutics: barriers and carriers. AAPS J 2010; 12: 492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim HJ, Kim A, Miyata K, Kataoka K . Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 2016; 104: 61–77.

    Article  CAS  PubMed  Google Scholar 

  11. Tseng YC, Mozumdar S, Huang L . Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61: 721–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gandhi NS, Tekade RK, Chougule MB . Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 2014; 194: 238–256.

    Article  CAS  PubMed  Google Scholar 

  13. Farrell D, Ptak K, Panaro NJ, Grodzinski P . Nanotechnology-based cancer therapeutics—promise and challenge—lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 2011; 28: 273–278.

    Article  CAS  PubMed  Google Scholar 

  14. Andey T, Sudhakar G, Marepally S, Patel A, Banerjee R, Singh M . Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation. Mol Pharm 2015; 12: 1105–1120.

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Zhang Y, Zhang W, Sun C, Wu J, Tang J . Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf B Biointerfaces 2016; 138: 60–69.

    Article  CAS  PubMed  Google Scholar 

  16. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY . A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006; 317: 1372–1381.

    Article  CAS  PubMed  Google Scholar 

  17. He C, Hu Y, Yin L, Tang C, Yin C . Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31: 3657–3666.

    Article  CAS  PubMed  Google Scholar 

  18. Storm G, Belliot SO, Daemen T, Lasic DD . Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995; 17: 31–48.

    Article  CAS  Google Scholar 

  19. Jiang W, Kim BY, Rutka JT, Chan WC . Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008; 3: 145–150.

    Article  CAS  PubMed  Google Scholar 

  20. Lauweryns JM, Baert JH . Alveolar clearance and the role of the pulmonary lymphatics. Am Rev Respir Dis 1977; 115: 625–683.

    CAS  PubMed  Google Scholar 

  21. Kelemen LE . The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 2006; 119: 243–250.

    Article  CAS  PubMed  Google Scholar 

  22. Dou S, Yao YD, Yang XZ, Sun TM, Mao CQ, Song EW et al. Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J Control Release 2012; 161: 875–883.

    Article  CAS  PubMed  Google Scholar 

  23. Nelson AL . Antibody fragments: hope and hype. mAbs 2010; 2: 77–83.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP . P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine 2012; 7: 65–78.

    Article  CAS  PubMed  Google Scholar 

  25. Essex S, Navarro G, Sabhachandani P, Chordia A, Trivedi M, Movassaghian S et al. Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther 2015; 22: 257–266.

    Article  PubMed  CAS  Google Scholar 

  26. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7: 994–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin G, Zhu W, Yang L, Wu J, Lin B, Xu Y et al. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 2014; 35: 9495–9507.

    Article  CAS  PubMed  Google Scholar 

  28. Yhee JY, Song S, Lee SJ, Park SG, Kim KS, Kim MG et al. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 2015; 198: 1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT . Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 2013; 7: 9571–9584.

    Article  CAS  PubMed  Google Scholar 

  30. Segovia N, Pont M, Oliva N, Ramos V, Borros S, Artzi N . Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer. Adv Healthcare Mater 2015; 4: 271–280.

    Article  CAS  Google Scholar 

  31. Huang Y, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z et al. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 2004; 64: 4294–4301.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y, Sadee W . Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett 2006; 239: 168–182.

    Article  CAS  PubMed  Google Scholar 

  33. Abbasi M, Lavasanifar A, Uludag H . Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med Res Rev 2013; 33: 33–53.

    Article  CAS  PubMed  Google Scholar 

  34. Nieth C, Priebsch A, Stege A, Lage H . Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 2003; 545: 144–150.

    Article  CAS  PubMed  Google Scholar 

  35. Wu H, Hait WN, Yang JM . Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003; 63: 1515–1519.

    CAS  PubMed  Google Scholar 

  36. Donmez Y, Gunduz U . Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed Pharmacother 2011; 65: 85–89.

    Article  PubMed  CAS  Google Scholar 

  37. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 2010; 79: 817–824.

    Article  CAS  PubMed  Google Scholar 

  38. Doyle L, Ross DD . Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22: 7340–7358.

    Article  PubMed  CAS  Google Scholar 

  39. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95: 15665–15670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ee PL, He X, Ross DD, Beck WT . Modulation of breast cancer resistance protein (BCRP/ABCG2) gene expression using RNA interference. Mol Cancer Ther 2004; 3: 1577–1583.

    CAS  PubMed  Google Scholar 

  41. Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin VP . Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer. Cancer Lett 2014; 343: 224–231.

    Article  CAS  PubMed  Google Scholar 

  42. Tang S, Yin Q, Zhang Z, Gu W, Chen L, Yu H et al. Co-delivery of doxorubicin and RNA using pH-sensitive poly (beta-amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials 2014; 35: 6047–6059.

    Article  CAS  PubMed  Google Scholar 

  43. Akar U, Chaves-Reyez A, Barria M, Tari A, Sanguino A, Kondo Y et al. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 2008; 4: 669–679.

    Article  CAS  PubMed  Google Scholar 

  44. Li F, Sethi G . Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta 2010; 1805: 167–180.

    CAS  PubMed  Google Scholar 

  45. Liu H, Liu Y, Zhang JT . A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 2008; 7: 263–270.

    Article  PubMed  CAS  Google Scholar 

  46. Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC . Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 2005; 65: 3861–3867.

    Article  CAS  PubMed  Google Scholar 

  47. Singel SM, Cornelius C, Zaganjor E, Batten K, Sarode VR, Buckley DL et al. KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia 2014; 16: 247–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee DJ, Kessel E, Edinger D, He D, Klein PM, Voith von Voithenberg L et al. Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials 2016; 77: 98–110.

    Article  CAS  PubMed  Google Scholar 

  49. Dong D, Gao W, Liu Y, Qi XR . Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Lett 2015; 359: 178–186.

    Article  CAS  PubMed  Google Scholar 

  50. Waldmann T, Schneider R . Targeting histone modifications—epigenetics in cancer. Curr Opin Cell Biol 2013; 25: 184–189.

    Article  CAS  PubMed  Google Scholar 

  51. Dawson MA, Kouzarides T . Cancer epigenetics: from mechanism to therapy. Cell 2012; 150: 12–27.

    Article  CAS  PubMed  Google Scholar 

  52. Calcagno AM, Fostel JM, To KK, Salcido CD, Martin SE, Chewning KJ et al. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. Br J Cancer 2008; 98: 1515–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Almeida LO, Abrahao AC, Rosselli-Murai LK, Giudice FS, Zagni C, Leopoldino AM et al. NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC). FEBS Open Biol 2014; 4: 96–104.

    Article  CAS  Google Scholar 

  54. Mungamuri SK, Murk W, Grumolato L, Bernstein E, Aaronson SA . Chromatin modifications sequentially enhance ErbB2 expression in ErbB2-positive breast cancers. Cell Rep 2013; 5: 302–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sandhu R, Rivenbark AG, Coleman WB . Enhancement of chemotherapeutic efficacy in hypermethylator breast cancer cells through targeted and pharmacologic inhibition of DNMT3b. Breast Cancer Res Treat 2012; 131: 385–399.

    Article  CAS  PubMed  Google Scholar 

  56. Sowinska A, Jagodzinski PP . RNA interference-mediated knockdown of DNMT1 and DNMT3B induces CXCL12 expression in MCF-7 breast cancer and AsPC1 pancreatic carcinoma cell lines. Cancer Lett 2007; 255: 153–159.

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki M, Sunaga N, Shames DS, Toyooka S, Gazdar AF, Minna JD . RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res 2004; 64: 3137–3143.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang J, Yang SJ, Wang JC, Yang LJ, Xu ZZ, Yang T et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 2010; 76: 170–178.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang XX, Eden HS, Chen X . Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 2012; 159: 2–13.

    Article  CAS  PubMed  Google Scholar 

  60. Zheng W, Yin T, Chen Q, Qin X, Huang X, Zhao S et al. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III beta-tubulin in drug-resistant breast cancers. Acta Biomater 2016; 31: 197–210.

    Article  CAS  PubMed  Google Scholar 

  61. Li YT, Chua MJ, Kunnath AP, Chowdhury EH . Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs. Int J Nanomedicine 2012; 7: 2473–2481.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Aliabadi HM, Maranchuk R, Kucharski C, Mahdipoor P, Hugh J, Uludag H . Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. J Control Release 2013; 172: 219–228.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Liu G, Zheng H, Chen X . Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 2014; 32: 831–843.

    Article  CAS  PubMed  Google Scholar 

  64. Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 2013; 34: 3912–3923.

    Article  CAS  PubMed  Google Scholar 

  65. Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP . Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 2013; 34: 1289–1301.

    Article  CAS  PubMed  Google Scholar 

  66. Zheng C, Zheng M, Gong P, Deng J, Yi H, Zhang P et al. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials 2013; 34: 3431–3438.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG et al. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials 2010; 31: 2408–2416.

    Article  CAS  PubMed  Google Scholar 

  68. Chen Y, Bathula SR, Li J, Huang L . Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem 2010; 285: 22639–22650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Y, Wu JJ, Huang L . Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol Ther 2010; 18: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kang SH, Cho HJ, Shim G, Lee S, Kim SH, Choi HG et al. Cationic liposomal co-delivery of small interfering RNA and a MEK inhibitor for enhanced anticancer efficacy. Pharm Res 2011; 28: 3069–3078.

    Article  CAS  PubMed  Google Scholar 

  71. Jang YL, Yun UJ, Lee MS, Kim MG, Son S, Lee K et al. Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression. Int J Pharm 2012; 434: 488–493.

    Article  CAS  PubMed  Google Scholar 

  72. Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X . The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials 2011; 32: 2222–2232.

    Article  CAS  PubMed  Google Scholar 

  73. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J . The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 2010; 31: 358–365.

    Article  CAS  PubMed  Google Scholar 

  74. Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB et al. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 2012; 80: 268–273.

    Article  CAS  PubMed  Google Scholar 

  75. Tan C, Wang Y, Fan W . Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics 2013; 5: 201–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakamura K, Abu Lila AS, Matsunaga M, Doi Y, Ishida T, Kiwada H . A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 2011; 19: 2040–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu X, Li Z, Zhao X, Keen L, Kong X . Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen Biomater 2016; 3: 187–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen Y, Zhu X, Zhang X, Liu B, Huang L . Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010; 18: 1650–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rajput S, Puvvada N, Kumar BN, Sarkar S, Konar S, Bharti R et al. Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Mol Pharm 2015; 12: 4214–4225.

    Article  CAS  PubMed  Google Scholar 

  80. Ran R, Liu Y, Gao H, Kuang Q, Zhang Q, Tang J et al. PEGylated hyaluronic acid-modified liposomal delivery system with anti-gamma-glutamylcyclotransferase siRNA for drug-resistant MCF-7 breast cancer therapy. J Pharm Sci 2015; 104: 476–484.

    Article  CAS  PubMed  Google Scholar 

  81. Blanchard Z, Paul BT, Craft B, ElShamy WM . BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res 2015; 17: 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Seitz S, Rick FG, Schally AV, Treszl A, Hohla F, Szalontay L et al. Combination of GHRH antagonists and docetaxel shows experimental effectiveness for the treatment of triple-negative breast cancers. Oncol Rep 2013; 30: 413–418.

    Article  CAS  PubMed  Google Scholar 

  83. Ghebeh H, Lehe C, Barhoush E, Al-Romaih K, Tulbah A, Al-Alwan M et al. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res 2010; 12: R48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tortorella S, Karagiannis TC . Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 2014; 247: 291–307.

    Article  CAS  PubMed  Google Scholar 

  85. Health USNIo. Safety Study of CALAA-01 to Treat Solid Tumor Cancers clinicaltrials.gov: Calando Pharmaceuticals; 2013. Available from https://clinicaltrials.gov/ct2/show/NCT00689065?term=CALAA-01&rank=1 (accessed on 7 April 2016).

  86. ClinicalTrials.gov. EphA2 Gene Targeting Using Neutral Liposomal Small Interfering RNA Delivery: M.D. Anderson Cancer Center, Cancer Prevention Research Institute of Texas; May 2012. 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT01591356?term=siRNA&rank=1 (accessed on 7 April 2016).

  87. Wittrup A, Lieberman J . Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 2015; 16: 543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG . Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 2012; 20: 513–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K et al. Off-target effects by siRNA can induce toxic phenotype. RNA 2006; 12: 1188–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bahadar H, Maqbool F, Niaz K, Abdollahi M . Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20: 1–11.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Sara Movassaghian and Christine Whitney for their expert support with literature research. This work was supported by the Wayne State Start-Up Grant to Olivia Merkel as well as the Ruth L Kirschstein National Research Award T32-CA009531 fellowship to SKJ. Submitted to: Nature Gene Therapy, upon invitation for the special issue on ‘Nanotechnology for Gene Therapy’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O M Merkel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, S., Merkel, O. Tackling breast cancer chemoresistance with nano-formulated siRNA. Gene Ther 23, 821–828 (2016). https://doi.org/10.1038/gt.2016.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.67

This article is cited by

Search

Quick links