Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus

Subjects

Abstract

The current therapies to treat hepatitis B virus (HBV) infection are limited. Recently, clustered regularly interspaced short palindromic repeat (CRISPR) systems, originally identified in bacteria and archaea, have been found to consist of an RNA-based adaptive immune system that degrades complimentary sequences of invading plasmids and viruses. Here, we studied the effects of the CRISPR/CRISPR-associated Cas9 system that was targeted to the surface antigen (HBsAg)-encoding region of HBV, both in a cell culture system and in vivo. The HBsAg levels in the media of the cells and in the sera of mice were analyzed by a quantitative enzyme-linked immunosorbent assay. The HBV DNA levels were assessed by quantitative PCR and HBsAg expression in mouse livers was assessed by an immunohistochemical assay. The amount of HBsAg secreted in the cell culture and mouse serum was reduced by CRISPR/Cas9 treatment. Immunohistochemistry analyses showed almost no HBsAg-positive cells in the liver tissue of CRISPR/Cas9-S1+X3-treated mice. The CRISPR/Cas9 system efficiently produced mutations in HBV DNA. Thus, CRISPR/Cas9 inhibits HBV replication and expression in vitro and in vivo and may constitute a new therapeutic strategy for HBV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nguyen DH, Ludgate L, Hu J . Hepatitis B virus-cell interactions and pathogenesis. J Cell Physiol 2008; 216: 289–294.

    Article  CAS  Google Scholar 

  2. Lee WM . Hepatitis B virus infection. N Engl J Med 1997; 337: 1733–1745.

    Article  CAS  Google Scholar 

  3. Lau JY, Wright TL . Molecular virology and hathogenesis of hepatitis B. Lancet 1993; 342: 1335–1340.

    CAS  PubMed  Google Scholar 

  4. Wands JR, Blum HE . Primary hepatocellular carcinoma. N Engl J Med 1991; 325: 729–731.

    Article  CAS  Google Scholar 

  5. Brechot C, Pourcel C, Louise A, Rain B, Tiollais P . Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 1980; 86: 533–535.

    Article  Google Scholar 

  6. Bréchot C, Nalpas B, Couroucé AM, Duhamel G, Callard P, Carnot F et al. Evidence that hepatitis B virus has a role in liver-cell carcinoma in alcoholic liver disease. N Engl J Med 1982; 306: 1384–1387.

    Article  Google Scholar 

  7. Dienstag JL, Cianciara J, Karayalcin S, Kowdley KV, Willems B, Plisek B et al. Durability of serologic response after lamivudine treatment of chronic hepatitis B. Hepatology 2003; 37: 748–755.

    Article  CAS  Google Scholar 

  8. Lai CL, Rosmawati M, Lao J, Van Vlierberghe H, Anderson FH, Thomas N et al. Entecavir is superior to lamivudine in reducing hepatitis B virus DNA in patients with chronic hepatitis B infection. Gastroenterology 2002; 123: 1831–1838.

    Article  CAS  Google Scholar 

  9. Lin OS, Keeffe EB . Current treatment strategies for chronic hepatitis B and C. Annu Rev Med 2001; 52: 29–49.

    Article  CAS  Google Scholar 

  10. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen positive chronic hepatitis B. N Engl J Med 2003; 348: 808–816.

    Article  CAS  Google Scholar 

  11. Buti M, Rodriguez-Frias F, Jardi R, Esteban R . Hepatitis B virus genome variability and disease progression: the impact of pre-core mutants and HBV genotypes. J Clin Virol 2005; 34: S79–S82.

    Article  CAS  Google Scholar 

  12. Tillmann HL . Antiviral therapy and resistance with hepatitis B virus infection. World J Gastroenterol 2007; 13: 125–140.

    Article  CAS  Google Scholar 

  13. Raimondo G, Caccamo G, Filomia R, Pollicino T . Occult HBV infection. Semin Immunopathol 2013; 35: 39–52.

    Article  CAS  Google Scholar 

  14. Xie H-Y, Cheng J, Xing C-Y, Wang J-J, Su R, Wei X-Y et al. Evaluation of hepatitis B viral replication and proteomic analysis of HepG2.2.15 cell line after knockdown of HBx. Hepatobility Pancreat Dis Int 2011; 10: 295–301.

    Article  CAS  Google Scholar 

  15. Delius H, Gough NM, Cameron CH, Murray K . Structure of the Hepatitis B Virus Genome. J Virol 1983; 47: 337–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wain-Hobson S, Pourcel C, Brechot C, Charnay P, Dubois MF, Fritsch A et al. Structure and expression of the hepatitis B virus genome. Dev Biol Stand 1981; 50: 293–300.

    CAS  PubMed  Google Scholar 

  17. Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P . Inactivation of Hepatitis B virus replication in cultured cells and in vivo with engineered transcripation activator-like effector nucleases. Am Soc Gene Cell Ther 2013; 10: 1038.

    Google Scholar 

  18. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M . Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51: 681–592.

    Article  Google Scholar 

  19. Zoulim F, Saoutellia A, Seeger C . Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 1994; 68: 2026–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Arbuthnot P, Capovilla A, Kew M . Putative role of hepatitis B virus X protein in hepatocarcinogenesis: effects on apoptosis, DNA require, mitogen-activated protein kinase and JAK/STAT pathways. J Gastroenterol Hepatol 2000; 15: 357–368.

    Article  CAS  Google Scholar 

  21. Tuttleman JS, Pourcel C, Summers J . Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 1986; 47: 451–460.

    Article  CAS  Google Scholar 

  22. Wu TT, Coates L, Aldrich CE, Summers J, Mason WS . In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 1990; 175: 255–261.

    Article  CAS  Google Scholar 

  23. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M . Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51: 581–592.

    Article  CAS  Google Scholar 

  24. Urnov FD, Miller JC, Lee YL, Beausejour CM, Augustus S, Jamieson AC et al. Highly efficient endogenous human gene correcting using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  Google Scholar 

  25. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK . De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double strand breaks. Proc Natl Acad Sci USA 2011; 108: 2623–2628.

    Article  CAS  Google Scholar 

  26. Liu J, Li C, Yu Z, Huang P, Wu H, Wei C et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012; 39: 209–215.

    Article  CAS  Google Scholar 

  27. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B . Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011; 29: 699–700.

    Article  Google Scholar 

  28. Dolgin E . The knockout rat pack. Nat Med 2010; 16: 254–257.

    Article  CAS  Google Scholar 

  29. Klug A . The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 2010; 79: 213–231.

    Article  CAS  Google Scholar 

  30. Gasiunas G, Barrangou R, Horvath P, Siksnys V . Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109: E2579–E2586.

    Article  CAS  Google Scholar 

  31. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468: 67–71.

    Article  CAS  Google Scholar 

  32. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guide DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816–821.

    Article  CAS  Google Scholar 

  33. Nishimasu H, Ran FA, Patrick DH, Silvana K, Soraya IS, Naoshi D et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156: 935–949.

    Article  CAS  Google Scholar 

  34. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCario JE et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823–826.

    Article  CAS  Google Scholar 

  35. Ebina H, Misawa N, Kanemura Y, Koyanagi Y . Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 10: 1038.

    Google Scholar 

  36. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 10: 1016.

    Google Scholar 

  37. Cho SW, Kim S, Kim JM, Kim JS . Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31: 230–232.

    Article  CAS  Google Scholar 

  38. Yang PL, Althage A, Chung J, Chisari FV . Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA 2012; 99: 13825–13830.

    Article  Google Scholar 

  39. Esvelt KM, Wang HH . Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 2013; 9: 641.

    Article  Google Scholar 

  40. Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR . Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol 2012; 86: 8920–8936.

    Article  CAS  Google Scholar 

  41. Jurica MS, Stoddard BL . Homing endonucleases: structure, function and evalution. Cell Mol Life Sci 1999; 55: 1304–1326.

    Article  CAS  Google Scholar 

  42. Aiba Y, Sumaoka J, Komiyama M . Artificial DNA cutters for DNA manipulation and genome engineering. Chem Soc Rev 2011; 40: 5657–5668.

    Article  CAS  Google Scholar 

  43. Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Nati Acod Sci USA 1996; 93: 1156–1160.

    Article  CAS  Google Scholar 

  44. Joung JK, Sander JD . TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14: 49–55.

    Article  CAS  Google Scholar 

  45. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD . Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013; 31: 227–229.

    Article  CAS  Google Scholar 

  46. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N . Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819–823.

    Article  CAS  Google Scholar 

  47. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014; 21: pii201405186.

    Google Scholar 

  48. Ebina H, Misawa N, Kanemura Y, koyanagi Y . Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 10: 2510.

    Article  Google Scholar 

  49. Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M . Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 2013; 10: 3355.

    Article  Google Scholar 

  50. Fujji W, Kano K, Sugiura K, Naito K . Repeatable construction method for engineered zinc nuclease based on overlap extension PCR and TA-cloning. PLoS One 2013; 8: e59801.

    Article  Google Scholar 

  51. Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013; 31: 23–24.

    Article  CAS  Google Scholar 

  52. Fujii W, Kawasaki K, Sugiura K, Naito K . Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 2013; 41: e187.

    Article  CAS  Google Scholar 

  53. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014; 32: 551–553.

    Article  CAS  Google Scholar 

  54. Ying R-S, Zhu C, Fan X-G, Li N, Tian X-F, Liu H-B et al. 2007. Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antiviral Res 2007; 73: 24–30.

    Article  CAS  Google Scholar 

  55. Schiffer JT, Swan DA, Stone D, Jerome KR . Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach. PLoS Comput Biol 2013; 9: e1003131.

    Article  CAS  Google Scholar 

  56. Yanfang Fu, Sander JD, Reyon D, Cascio VM, Joung JK . Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32: 279–284.

    Article  Google Scholar 

  57. Yang W, Mason WS, Summers J . Covalently dosed circular viral DNA formed from two types of linear DNA in woodchuck hepatitis virus-infected liver. J Virol 1996; 70: 4567–4575.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dejean A, Vitvitski L, Brechot C, Trepo C, Tiollais P, Charnay P . Presence and state of woodchuck hepatitis virus DNA in liver and serum of woodchucks: further analogies with human hepatitis B virus. Virology 1982; 121: 195–199.

    Article  CAS  Google Scholar 

  59. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823–826.

    Article  CAS  Google Scholar 

  60. Cain C, Writer S . CRISPR genome editing. SciBX 2013: 1–3.

  61. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154: 1380–1389.

    Article  CAS  Google Scholar 

  62. Wong DK, Yuen MF, Yuan H, Sum SS, Hui CK, Hall J . Quantitation of covalently closed circular hepatitis B virus DNA in chronic hepatitis B patients. Hepatology 2004; 40: 727–737.

    Article  CAS  Google Scholar 

  63. Tremblay JP, Xiao X, Aartsma-Rus A, Barbas C, Blau HM, Bogdanove AJ et al. Translating the genomics revolution: the need for an international gene therapy consortium for monogenic diseases. Mol Ther 2013; 21: 266–268.

    Article  CAS  Google Scholar 

  64. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ . A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 2010; 649: 247–256.

    Article  CAS  Google Scholar 

  65. Li D, Xu DZ, Choi BC, Men K, Zhang JX, Lei XY . Preliminary study on the efficacy and safety of lamivudine and interferon alpha therapy in decreasing serum HBV DNA level in HBV positive transgenic mice during pregnancy. J Med Virol 2005; 76: 2003–2007.

    Article  Google Scholar 

  66. Chen X, Li M, Le X, Ma W, Zhou B . Recombinant hepatitis B core antigen carrying preS1 epitopes induce immune response against chronic HBV infection. Vaccine 2004; 22: 439–446.

    Article  CAS  Google Scholar 

  67. Gao LF, Sun WS, Ma CH, Liu SX, Wang XY, Zhang LN . Establishment of mice model with human viral hepatitis B. World J Gastroenterol 2004; 10: 841–846.

    Article  CAS  Google Scholar 

  68. Zhang G, Budker V, Wolff A . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA.Hum. Gene Ther 1999; 10: 1735–1737.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Linsheng Zhan and Professor Yusen Zhou for providing the plasmids; Professor Hui Zhong for help with the modification of the article; Ling-Zhen Li, Shao-Ming Guo and Cui-Li Zhu for their excellent technical assistance. This study was supported by grants from the National Natural Science Foundation of China (grant no. 81272701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H-F Song or X Gao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, S., Hua, L., Liu, YH. et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22, 404–412 (2015). https://doi.org/10.1038/gt.2015.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.2

This article is cited by

Search

Quick links