Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting adipose tissue via systemic gene therapy

Abstract

Adipose tissue has a critical role in energy and metabolic homeostasis, but it is challenging to adapt techniques to modulate adipose function in vivo. Here we develop an in vivo, systemic method of gene transfer specifically targeting adipose tissue using adeno-associated virus (AAV) vectors. We constructed AAV vectors containing cytomegalovirus promoter-regulated reporter genes, intravenously injected adult mice with vectors using multiple AAV serotypes, and determined that AAV2/8 best targeted adipose tissue. Altering vectors to contain adiponectin promoter/enhancer elements and liver-specific microRNA-122 target sites restricted reporter gene expression to adipose tissue. As proof of efficacy, the leptin gene was incorporated into the adipose-targeted expression vector, package into AAV2/8 and administered intravenously to 9- to 10-week-old ob/ob mice. Phenotypic changes were measured over an 8-week period. Leptin mRNA and protein were expressed in adipose and leptin protein was secreted into plasma. Mice responded with reversal of weight gain, decreased hyperinsulinemia and improved glucose tolerance. AAV2/8-mediated systemic delivery of an adipose-targeted expression vector can replace a gene lacking in adipose tissue and correct a mouse model of human disease, demonstrating experimental application and therapeutic potential in disorders of adipose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bray GA, Bellanger T . Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 2006; 29: 109–117.

    Article  CAS  Google Scholar 

  2. Rosen ED, Spiegelman BM . Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444: 847–853.

    Article  CAS  Google Scholar 

  3. Cao H, Molday RS, Hu J . Gene therapy: light is finally in the tunnel. Protein Cell 2011; 2: 973–989.

    Article  CAS  Google Scholar 

  4. Carter BJ . Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 2004; 10: 981–989.

    Article  CAS  Google Scholar 

  5. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.

    Article  CAS  Google Scholar 

  6. Arruda VR, Stedman HH, Nichols TC, Haskins ME, Nicholson M, Herzog RW et al. Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005; 105: 3458–3464.

    Article  CAS  Google Scholar 

  7. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    Article  CAS  Google Scholar 

  8. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  Google Scholar 

  9. Woo YJ, Zhang JC, Taylor MD, Cohen JE, Hsu VM, Sweeney HL . One year transgene expression with adeno-associated virus cardiac gene transfer. Int J Cardiol 2005; 100: 421–426.

    Article  Google Scholar 

  10. Yla-Herttuala S . Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 2012; 20: 1831–1832.

    Article  Google Scholar 

  11. Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Therapy 2003; 14: 59–66.

    Article  CAS  Google Scholar 

  12. Nagamatsu S, Nakamichi Y, Ohara-Imaizumi M, Ozawa S, Katahira H, Watanabe T et al. Adenovirus-mediated preproinsulin gene transfer into adipose tissues ameliorates hyperglycemia in obese diabetic KKA(y) mice. FEBS Lett 2001; 509: 106–110.

    Article  CAS  Google Scholar 

  13. Mizukami H, Mimuro J, Ogura T, Okada T, Urabe M, Kume A et al. Adipose tissue as a novel target for in vivo gene transfer by adeno-associated viral vectors. Hum Gene Therapy 2006; 17: 921–928.

    Article  CAS  Google Scholar 

  14. Zhang FL, Jia SQ, Zheng SP, Ding W . Celastrol enhances AAV1-mediated gene expression in mice adipose tissues. Gene Therapy 2011; 18: 128–134.

    Article  Google Scholar 

  15. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004; 1: 106–113.

    Article  CAS  Google Scholar 

  16. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  Google Scholar 

  17. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R et al. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Therapy 2011; 18: 199–209.

    Article  CAS  Google Scholar 

  18. Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Therapy 2011; 18: 403–410.

    Article  CAS  Google Scholar 

  19. Kassim SH, Li H, Bell P, Somanathan S, Lagor W, Jacobs F et al. Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia. Hum Gene Therapy 2013; 24: 19–26.

    Article  CAS  Google Scholar 

  20. Segawa K, Matsuda M, Fukuhara A, Morita K, Okuno Y, Komuro R et al. Identification of a novel distal enhancer in human adiponectin gene. J Endocrinol 2009; 200: 107–116.

    Article  CAS  Google Scholar 

  21. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1: 1155–1161.

    Article  CAS  Google Scholar 

  22. Murphy JE, Zhou S, Giese K, Williams LT, Escobedo JA, Dwarki VJ . Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin. Proc Natl Acad Sci USA 1997; 94: 13921–13926.

    Article  CAS  Google Scholar 

  23. Garg A . Acquired and inherited lipodystrophies. N Engl J Med 2004; 350: 1220–1234.

    Article  CAS  Google Scholar 

  24. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  CAS  Google Scholar 

  25. Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A et al. Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance. Cell Metab 2006; 4: 303–311.

    Article  CAS  Google Scholar 

  26. Cortes VA, Curtis DE, Sukumaran S, Shao X, Parameswara V, Rashid S et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab 2009; 9: 165–176.

    Article  CAS  Google Scholar 

  27. Hirsch ML, Green L, Porteus MH, Samulski RJ . Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Therapy 2010; 17: 1175–1180.

    Article  CAS  Google Scholar 

  28. Cunningham SC, Dane AP, Spinoulas A, Logan GJ, Alexander IE . Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol Ther 2008; 16: 1081–1088.

    Article  CAS  Google Scholar 

  29. Grimm D, Pandey K, Nakai H, Storm TA, Kay MA . Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. J Virol 2006; 80: 426–439.

    Article  CAS  Google Scholar 

  30. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  Google Scholar 

  31. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.

    Article  CAS  Google Scholar 

  32. Tanguay RL, Gallie DR . Translational efficiency is regulated by the length of the 3' untranslated region. Mol Cell Biol 1996; 16: 146–156.

    Article  CAS  Google Scholar 

  33. Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O . Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region. PLoS Biol 2008; 6: e92.

    Article  Google Scholar 

  34. Wen J, Friedman JR . miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest 2012; 122: 2773–2776.

    Article  CAS  Google Scholar 

  35. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.

    Article  CAS  Google Scholar 

  36. Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Therapy 2013; 20: 361–369.

    Article  CAS  Google Scholar 

  37. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  Google Scholar 

  38. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008; 320: 1185–1190.

    Article  CAS  Google Scholar 

  39. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    Article  CAS  Google Scholar 

  40. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 110: 1093–1103.

    Article  CAS  Google Scholar 

  41. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    Article  CAS  Google Scholar 

  42. Klebanov S, Astle CM, DeSimone O, Ablamunits V, Harrison DE . Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. J Endocrinol 2005; 186: 203–211.

    Article  CAS  Google Scholar 

  43. Muzzin P, Eisensmith RC, Copeland KC, Woo SL . Correction of obesity and diabetes in genetically obese mice by leptin gene therapy. Proc Natl Acad Sci USA 1996; 93: 14804–14808.

    Article  CAS  Google Scholar 

  44. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341: 879–884.

    Article  CAS  Google Scholar 

  45. Peyvandi F, Palla R, Menegatti M, Siboni SM, Halimeh S, Faeser B et al. Coagulation factor activity and clinical bleeding severity in rare bleeding disorders: results from the European Network of Rare Bleeding Disorders. J Thromb Haemost 2012; 10: 615–621.

    Article  CAS  Google Scholar 

  46. National Research Council. Guide for the Care and Use of Laboratory Animals, 8th edn. The National Academies Press: Washington, DC, 2011.

  47. Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Therapy 2010; 21: 1259–1271.

    Article  CAS  Google Scholar 

  48. Lumeng CN, Bodzin JL, Saltiel AR . Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Pennsylvania Vector Core for providing the vectors and conducting the biodistribution analyses. This work was supported by research awards from the National Institutes of Health (NIH) to the University of Pennsylvania including R01-DK-090505 (to Muredach Reilly), a NIDDK Diabetes and Endocrine Research Center award (P20-DK 019525) and a NIDDK Molecular Therapy P30 Center Grant (P30-DK-047757). Sean O’Neill received support from a NRSA grant 5-T32-HL07748 funded by the National Heart, Lung and Blood Institute. We acknowledge the Diabetes Research Center Mouse Phenotyping Core for their work supported by P30-DK19525. Muredach Reilly is supported also by R01-HL-113147, R01-HL-111694, U01-HL108636 and K24-HL107643 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P Reilly.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Neill, S., Hinkle, C., Chen, SJ. et al. Targeting adipose tissue via systemic gene therapy. Gene Ther 21, 653–661 (2014). https://doi.org/10.1038/gt.2014.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.38

This article is cited by

Search

Quick links