Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model

Abstract

Low levels of the molecular inotrope S100A1 are sufficient to rescue post-ischemic heart failure (HF). As a prerequisite to clinical application and to determine the safety of myocardial S100A1 DNA-based therapy, we investigated the effects of high myocardial S100A1 expression levels on the cardiac contractile function and occurrence of arrhythmia in a preclinical large animal HF model. At 2 weeks after myocardial infarction domestic pigs presented significant left ventricular (LV) contractile dysfunction. Retrograde application of AAV6-S100A1 (1.5 × 1013 tvp) via the anterior cardiac vein (ACV) resulted in high-level myocardial S100A1 protein peak expression of up to 95-fold above control. At 14 weeks, pigs with high-level myocardial S100A1 protein overexpression did not show abnormalities in the electrocardiogram. Electrophysiological right ventricular stimulation ruled out an increased susceptibility to monomorphic ventricular arrhythmia. High-level S100A1 protein overexpression in the LV myocardium resulted in a significant increase in LV ejection fraction (LVEF), albeit to a lesser extent than previously reported with low S100A1 protein overexpression. Cardiac remodeling was, however, equally reversed. High myocardial S100A1 protein overexpression neither increases the occurrence of cardiac arrhythmia nor causes detrimental effects on myocardial contractile function in vivo. In contrast, this study demonstrates a broad therapeutic range of S100A1 gene therapy in post-ischemic HF using a preclinical large animal model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. AHA. Heart disease and stroke statistics: 2010 update. Circulation 2010; 21: e1–e170.

    Google Scholar 

  2. Flather MD, Yusuf S, Køber L, Pfeffer M, Hall A, Murray G et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. Lancet 2000; 6: 1575–1581.

    Article  Google Scholar 

  3. Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HB, Hildebrandt PR . Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol 2000; 36: 2072–2080.

    Article  CAS  Google Scholar 

  4. McMurray JJ . Clinical practice. Systolic heart failure. N Engl J Med 2010; 362: 228–238.

    Article  CAS  Google Scholar 

  5. Bers DM . Cardiac excitation-contraction coupling. Nature 2002; 415: 198–205.

    Article  CAS  Google Scholar 

  6. Pleger ST, Boucher M, Most P, Koch WJ . Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail 2007; 13: 401–414.

    Article  CAS  Google Scholar 

  7. Pleger ST, Brinks H, Ritterhof J, Raake P, Koch WJ, Katus HA et al. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113: 792–809.

    Article  CAS  Google Scholar 

  8. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM . Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 2008; 15: 1550–1557.

    Article  CAS  Google Scholar 

  9. Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation 2004; 110: 330–336.

    Article  CAS  Google Scholar 

  10. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 2011; 3: 92ra64.

    Article  CAS  Google Scholar 

  11. Raake PW, Schlegel P, Ksienzyk J, Reinkober J, Barthelmes J, Schinkel S et al. AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 2013; 34: 1437–1447.

    Article  CAS  Google Scholar 

  12. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M et al. S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 2009; 47: 445–455.

    Article  CAS  Google Scholar 

  13. Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ et al. Ca2+-dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol 2007; 27: 4365–4373.

    Article  CAS  Google Scholar 

  14. Gusev K, Ackermann GE, Heizmann CW, Niggli E . Ca2+ signaling in mouse cardiomyocytes with ablated S100A1 protein. Gen Physiol Biophys 2009; 28: 371–383.

    Article  CAS  Google Scholar 

  15. Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M et al. S100A1: a regulator of myocardial contractility. Proc Natl Acad Sci USA 2001; 98: 13889–13894.

    Article  CAS  Google Scholar 

  16. Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J et al. Transgenic overexpression of the Ca2+ binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem 2003; 278: 33809–33817.

    Article  CAS  Google Scholar 

  17. Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 2006; 114: 1258–1268.

    Article  CAS  Google Scholar 

  18. Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG . The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart. Mol Cell Biochem 2003; 242: 27–33.

    Article  CAS  Google Scholar 

  19. Völkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR Jr, Wegner FV et al. S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 2007; 41: 135–143.

    Article  Google Scholar 

  20. Remppis A, Greten T, Schafer BW, Hunziker P, Erne P, Katus HA et al. Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta 1996; 1313: 253–257.

    Article  Google Scholar 

  21. Brinks H, Rohde D, Völkers M, Qiu G, Pleger ST, Herzog N et al. S100A1 genetically-targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol 2011; 58: 966–973.

    Article  CAS  Google Scholar 

  22. Jessup M, Greenberg B, Mancini D, Cappola TP, Pauly DF, Greenberg B et al. CUPID-a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  Google Scholar 

  23. Tang T, Gao MH, Hammond HK . Prospects for gene transfer for clinical heart failure. Gene Ther 2012; 19: 606–612.

    Article  CAS  Google Scholar 

  24. Dybkova N, Sedej S, Napolitano C, Neef S, Rokita AG, Hünlich M et al. Overexpression of CaMKIIδc in RyR2R4496C+/− knock-in mice leads to altered intracellular Ca2+ handling and increased mortality. J Am Coll Cardiol 2011; 57: 469–479.

    Article  CAS  Google Scholar 

  25. Engelhardt S, Hein L, Wiesmann F, Lohse MJ . Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999; 96: 7059–7064.

    Article  CAS  Google Scholar 

  26. Engelhardt S, Hein L, Dyachenkow V, Kranias EG, Isenberg G, Lohse MJ . Altered calcium handling is critically involved in the cardiotoxic effects of chronic beta-adrenergic stimulation. Circulation 2004; 109: 1154–1160.

    Article  CAS  Google Scholar 

  27. Pott C, Muszynski A, Ruhe M, Bögeholz N, Schulte JS, Milberg P et al. Proarrhythmia in a non-failing murine model of cardiac-specific Na+/Ca2+ exchanger overexpression: whole heart and cellular mechanisms. Basic Res Cardiol 2012; 107: 247.

    Article  Google Scholar 

  28. Wittköpper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsöld B et al. Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 2010; 120: 617–626.

    PubMed  PubMed Central  Google Scholar 

  29. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 1999; 104: 21–29.

    Article  CAS  Google Scholar 

  30. Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M et al. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther 2005; 12: 1120–1129.

    Article  CAS  Google Scholar 

  31. Chen Y, Escoubet B, Prunier F, Amour J, Simonides WS, Vivien B et al. Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmia. Circulation 2004; 109: 1898–1903.

    Article  CAS  Google Scholar 

  32. Dixon JA, Spinale FG . Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2009; 2: 262–271.

    Article  Google Scholar 

  33. Hove-Madsen L, Bers DM . Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circ Res 1993; 73: 820–828.

    Article  CAS  Google Scholar 

  34. James J, Zhang Y, Wright K, Witt S, Glascock E, Osinska H et al. Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy. J Mol Cell Cardiol 2002; 34: 873–882.

    Article  CAS  Google Scholar 

  35. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 2007; 115: 2506–2515.

    Article  CAS  Google Scholar 

  36. Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D et al. Cardiac adenoviral S100A1 gene transfer rescues failing myocardium. J Clin Invest 2004; 114: 1550–1563.

    Article  CAS  Google Scholar 

  37. Most P, Remppis A, Weber C, Bernotat J, Ehlermann P, Pleger ST et al. The C terminus (amino acids 75–94) and the linker region (amino acids 42–54) of the Ca2+-binding protein S100A1 differentially enhance sarcoplasmic Ca2+ release in murine skinned skeletal muscle fibers. J Biol Chem 2003; 18: 26356–26364.

    Article  Google Scholar 

  38. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G . A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 1999; 341: 1882–1890.

    Article  CAS  Google Scholar 

  39. Buxton AE, Lee KL, DiCarlo L, Gold MR, Greer JS, Prystowsky N et al. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. Multicenter unsustained tachycardia trial investigators. N Engl J Med 2000; 342: 1937–1945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Barbara Leuchs and the DKFZ vector core production unit for generating high-titer AAV vector stocks. This work was supported by the following NIH grants: R01HL92130 and R01HL92130-02S1 (PM); P01HL075443, R01HL56205 and R01HL061690 (WJK); Deutsche Forschungsgemeinschaft: 1654/3-2 (OJM), 562/1-1 (PM and STP); the Bundesministerium für Bildung und Forschung: 01GU0527 (PM, OJM, HAK); Deutsche Gesellschaft für Kardiologie Otto Hess Promotionsstipendium (CW); and the German Cardiovascular Research Center (DZHK to PM, HAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Pleger.

Ethics declarations

Competing interests

P Most and HA Katus report potential competing interests as they have filed US and EU patent applications on the therapeutic use of the S100A1 protein to treat heart failure. CW, IN, BK, PS, PR, JR, AJ, WJK, OJM and STP declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, C., Neacsu, I., Krautz, B. et al. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther 21, 131–138 (2014). https://doi.org/10.1038/gt.2013.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.63

Keywords

This article is cited by

Search

Quick links