Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells

Abstract

Bone regeneration achieved using mesenchymal stem cells (MSCs) and nonviral gene therapy holds great promise for patients with fractures seemingly unable to heal. Previously, MSCs overexpressing bone morphogenetic proteins (BMPs) were shown to differentiate into the osteogenic lineage and induce bone formation. In the present study, we evaluated the potential of osteogenic differentiation in porcine adipose tissue- and bone marrow-derived MSCs (ASCs and BMSCs, respectively) in vitro and in vivo when induced by nucleofection with rhBMP-2 or rhBMP-6. Our assessment of the in vivo efficiency of this procedure was made using quantitative micro-computed tomography (micro-CT). Nucleofection efficiency and cell viability were similar in both cell types; however, the micro-CT analyses demonstrated that in both ASCs and BMSCs, nucleofection with rhBMP-6 generated bone tissue faster and of higher volumes than nucleofection with rhBMP-2. RhBMP-6 induced more efficient osteogenic differentiation in vitro in BMSCs, and in fact, greater osteogenic potential was identified in BMSCs both in vitro and in vivo than in ASCs. On the basis of our findings, we conclude that BMSCs nucleofected with rhBMP-6 are superior at inducing bone formation in vivo than all other groups studied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Gautschi OP, Frey SP, Zellweger R . Bone morphogenetic proteins in clinical applications. ANZ J Surg 2007; 77: 626–631.

    Article  PubMed  Google Scholar 

  2. Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H . Scaffolds for bone healing: concepts, materials and evidence. Injury 2011; 42: 569–573.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 2010; 107: 13614–13619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bianco P, Riminucci M, Gronthos S, Robey PG . Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180–192.

    Article  CAS  PubMed  Google Scholar 

  6. Krampera M, Pizzolo G, Aprili G, Franchini M . Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 2006; 39: 678–683.

    Article  CAS  PubMed  Google Scholar 

  7. Turgeman G, Pittman DD, Müller R, Kurkalli BG, Zhou S, Pelled G et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 2001; 3: 240–251.

    Article  CAS  PubMed  Google Scholar 

  8. Sheyn D, Kallai I, Tawackoli W, Cohn Yakubovich D, Oh A, Su S et al. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm 2011; 8: 1592–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z . Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Therapy 2008; 15: 257–266.

    Article  CAS  PubMed  Google Scholar 

  10. Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D et al. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 2006; 24: 1728–1737.

    Article  PubMed  Google Scholar 

  11. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D . Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 2007; 13: 1135–1150.

    Article  CAS  PubMed  Google Scholar 

  12. Lavery K, Swain P, Falb D, Alaoui-Ismaili MH . BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 2008; 283: 20948–20958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Therapy 2004; 11: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  14. Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 2011; 19: 53–59.

    Article  CAS  PubMed  Google Scholar 

  15. Sheyn D, Rüthemann M, Mizrahi O, Kallai I, Zilberman Y, Tawackoli W et al. Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Eng Part A 2010; 16: 3679–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paul S, Lee JC, Yeh LC . A comparative study on BMP-induced osteoclastogenesis and osteoblastogenesis in primary cultures of adult rat bone marrow cells. Growth Factors 2009; 27: 121–131.

    Article  CAS  PubMed  Google Scholar 

  17. Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2007; 25: 665–677.

    Article  CAS  PubMed  Google Scholar 

  18. Zachos TA, Shields KM, Bertone AL . Gene-mediated osteogenic differentiation of stem cells by bone morphogenetic proteins−2 or −6. J Orthop Res 2006; 24: 1279–1291.

    Article  CAS  PubMed  Google Scholar 

  19. Carpenter RS, Goodrich LR, Frisbie DD, Kisiday JD, Carbone B, McIlwraith CW et al. Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone. J Orthop Res 2010; 28: 1330–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ et al. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Therapy 2003; 10: 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85-A: 1544–1552.

    Article  Google Scholar 

  22. Kofron MD, Laurencin CT . Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 2006; 58: 555–576.

    Article  CAS  PubMed  Google Scholar 

  23. Aslan H, Zilberman Y, Arbeli V, Sheyn D, Matan Y, Liebergall M et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng 2006; 12: 877–889.

    Article  CAS  PubMed  Google Scholar 

  24. Hasharoni A, Zilberman Y, Turgeman G, Helm GA, Liebergall M, Gazit D . Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine 2005; 3: 47–52.

    Article  PubMed  Google Scholar 

  25. Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 2001; 3: 449–461.

    Article  CAS  PubMed  Google Scholar 

  26. Sheyn D, Pelled G, Zilberman Y, Talasazan F, Frank JM, Gazit D et al. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 2008; 26: 1056–1064.

    Article  PubMed  Google Scholar 

  27. Santos JL, Pandita D, Rodrigues J, Pêgo AP, Granja PL, Tomás H . Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther 2011; 11: 46–57.

    Article  PubMed  Google Scholar 

  28. Zaragosi LE, Billon N, Ailhaud G, Dani C . Nucleofection is a valuable transfection method for transient and stable transgene expression in adipose tissue-derived stem cells. Stem Cells 2007; 25: 790–797.

    Article  CAS  PubMed  Google Scholar 

  29. Sheyn D, Mizrahi O, Benjamin S, Gazit Z, Pelled G, Gazit D . Genetically modified cells in regenerative medicine and tissue engineering. Adv Drug Deliv Rev 2010; 62: 683–698.

    Article  CAS  PubMed  Google Scholar 

  30. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D et al. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue engineering 2007; 13: 1135–1150.

    Article  CAS  PubMed  Google Scholar 

  31. Kimelman BN, Kallai I, Lieberman JR, Schwarz EM, Pelled G, Gazit D . Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 2012, e-pub ahead of print 10 March 2012.

  32. Boden SD, McCuaig K, Hair G, Racine M, Titus L, Wozney JM et al. Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro. Endocrinology 1996; 137: 3401–3407.

    Article  CAS  PubMed  Google Scholar 

  33. Vukicevic S, Grgurevic L . BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev 2009; 20: 441–448.

    Article  CAS  PubMed  Google Scholar 

  34. Levi B, Longaker MT . Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells 2011; 29: 576–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cavallo C, Cuomo C, Fantini S, Ricci F, Tazzari PL, Lucarelli E et al. Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. J Cell Biochem 2011; 112: 1418–1430.

    Article  CAS  PubMed  Google Scholar 

  36. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi O, Katsube Y, Hirose M, Ohgushi H, Ito H . Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 2008; 82: 238–247.

    Article  CAS  PubMed  Google Scholar 

  38. Im GI, Shin YW, Lee KB . Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 2005; 13: 845–853.

    Article  Google Scholar 

  39. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14: 311–324.

    Article  CAS  PubMed  Google Scholar 

  40. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K . Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  41. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174: 101–109.

    Article  PubMed  Google Scholar 

  42. Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 2010; 31: 3572–3579.

    Article  CAS  PubMed  Google Scholar 

  43. Jane JA, Dunford BA, Kron A, Pittman DD, Sasaki T, Li JZ et al. Ectopic osteogenesis using adenoviral bone morphogenetic protein (BMP)-4 and BMP-6 gene transfer. Mol Ther 2002; 6: 464–470.

    Article  CAS  PubMed  Google Scholar 

  44. Simic P, Culej JB, Orlic I, Grgurevic L, Draca N, Spaventi R et al. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 2006; 281: 25509–25521.

    Article  CAS  PubMed  Google Scholar 

  45. Muchow RD, Hsu WK, Anderson PA . Histopathologic inflammatory response induced by recombinant bone morphogenetic protein-2 causing radiculopathy after transforaminal lumbar interbody fusion. Spine J 2010; 10: e1–e6.

    Article  PubMed  Google Scholar 

  46. Perri B, Cooper M, Lauryssen C, Anand N . Adverse swelling associated with use of rh-BMP-2 in anterior cervical discectomy and fusion: a case study. Spine J 2007; 7: 235–239.

    Article  PubMed  Google Scholar 

  47. Deutsch H . High-dose bone morphogenetic protein-induced ectopic abdomen bone growth. Spine J 2010; 10: e1–e4.

    Article  PubMed  Google Scholar 

  48. Bosch P, Pratt SL, Stice SL . Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod 2006; 74: 46–57.

    Article  CAS  PubMed  Google Scholar 

  49. Calve S, Dennis RG, Kosnik 2nd PE, Baar K, Grosh K, Arruda EM . Engineering of functional tendon. Tissue Eng 2004; 10: 755–761.

    Article  PubMed  Google Scholar 

  50. Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Pelled G, Gazit D . Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc 2011; 6: 105–110.

    Article  CAS  PubMed  Google Scholar 

  51. Muller R, Ruegsegger P . Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud Health Technol Inform 1997; 40: 61–79.

    CAS  PubMed  Google Scholar 

  52. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P . Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 1999; 14: 1167–1174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge partial funding from the Telemedicine and Advanced Technology Research Center (TATRC), the US Army Medical Research and Materiel Command (Grant no. 0821700) and the Israel Ministry of Science and Technology (Grant no. 3-6446 and a ‘Levi Eshkol’ fellowship to IK).’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Gazit.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizrahi, O., Sheyn, D., Tawackoli, W. et al. BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells. Gene Ther 20, 370–377 (2013). https://doi.org/10.1038/gt.2012.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.45

Keywords

This article is cited by

Search

Quick links