Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells

Abstract

We investigated the transduction of HEK293T cells permissive to adeno-associated virus serotype 8 (AAV8) to understand the mechanisms underlying its endocytic processing. Results showed that AAV8 enters cells through clathrin-mediated endocytosis followed by trafficking through various endosomal compartments. Interestingly, compared to the relatively well-characterized AAV2, a distinct involvement of late endosomes was observed for AAV8 trafficking within the target cell. AAV8 particles were also shown to exploit the cytoskeleton network to facilitate their transport within cells. Moreover, the cellular factors involved during endosomal escape were examined by an in vitro membrane permeabilization assay. Our data demonstrated that an acidic endosomal environment was required for AAV2 penetration through endosomal membranes and that the cellular endoprotease furin could promote AAV2 escape from the early endosomes. In contrast, these factors were not sufficient for AAV8 penetration through endosomal membranes. We further found that the ubiquitin–proteasome system is likely involved in the intracellular transport of AAV8 to nucleus. Taken together, our data have shed some light on the intracellular trafficking pathways of AAV8, which, in turn, could provide insight for potentializing AAV-mediated gene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mueller C, Flotte TR . Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Therapy 2008; 15: 858–863.

    Article  CAS  PubMed  Google Scholar 

  2. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  3. Choi VW, McCarty DM, Samulski RJ . AAV Hybrid serotype: improved vectors for gene delivery. Curr Gene Ther 2006; 5: 299–310.

    Article  Google Scholar 

  4. Flotte TR, Carter BJ . Adeno-associated virus vectors for gene therapy. Gene Therapy 1995; 2: 357–362.

    CAS  PubMed  Google Scholar 

  5. Grimm D, Kay M . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    Article  CAS  PubMed  Google Scholar 

  6. Gao G, Wilson J . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  7. Schultz BR, Chamberlain JS . Recombinant adeno-associated virus transduction and integration. Mol Ther 2008; 16: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  8. Mingozzi F, High KA . Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12: 341–355.

    Article  CAS  PubMed  Google Scholar 

  9. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 2006; 13: 77–87.

    Article  CAS  PubMed  Google Scholar 

  10. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  11. Nakai H, Fuess S, Storm TA . Muramatsu S-i, Nara Y, Kay MA. Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  13. Nathwani AC, Tuddenham EGD, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365: 2357–2365.

  14. Summerford C, Samulski R . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Akache B, Grimm D, Pandey K, Stephen R, Yant HX, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding W, Zhang L, Yan Z, Engelhardt JF . Intracellular trafficking of adeno-associated viral vectors. Gene Therapy 2005; 12: 873–880.

    Article  CAS  PubMed  Google Scholar 

  17. Hansen J, Qing K, Kwon H, Mah C, Srivastava A . Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74: 992–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pajusola K, Gruchala M, Joch H, Luscher TF, Yla-Herttuala S, Bueler H . Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol 2002; 76: 11530–11540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartlett JS, Wilcher R, Samulski RJ . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 2000; 74: 2777–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding W, Zhang LN, Yeaman C, Engelhardt JF . rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol Ther 2006; 12: 671–682.

    Article  Google Scholar 

  21. Joo K-I, Fang Y, Liu Y, Xiao L, Gu Z, Tai A et al. Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates. ACS Nano 2011; 5: 3523–3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Douar A-M . Poulard K, Stockholm D, Danos O. Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75: 1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hansen J, Qing K, Srivastava A . Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts. J Virol 2001; 75: 4080–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA . Adeno-associated virus type 2 capsid with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol 2006; 80: 11040–11054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suikkanen S, Antila M, Jaatinen A, Vihinen-Ranta M, Vuento M . Release of canine parvovirus from endocytic vesicles. Virology 2003; 316: 267–280.

    Article  CAS  PubMed  Google Scholar 

  26. Duan D, Li Q, Kao AW, Yue Y, Pessin JE, Engelhardt JF . Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol 1999; 73: 10371–10376.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Seisenberger G, Ried MU, Endreß T, Büning H, Hallek M, Bräuchle C . Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294: 1929–1932.

    Article  CAS  PubMed  Google Scholar 

  28. Schmid SL . Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 1997; 66: 511–548.

    Article  CAS  PubMed  Google Scholar 

  29. Wang LH, Rothberg KG, Anderson RGW . Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 1993; 123: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  30. Orlandi PA, Fishman PH . Filipin-dependent inhibition of cholera toxin: Evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998; 141: 905–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bowman EJ, Siebers A, Altendorf K . Bafilomycins - a class of inhibitors of membrane atpases from microorganisms, animal-cells, and plant-cells. Proc Nat Acad Sci USA 1988; 85: 7972–7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stenmark H, Parton R, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M . Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 1994; 13: 1287–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Press B, Feng Y, Hoflack B, Wandinger-Ness A . Mutant Rab7 Causes the Accumulation of Cathepsin D and Cation-independent Mannose 6-Phosphate Receptor in an Early Endocytic Compartment. J Cell Biol 1998; 140: 1075–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choudhury A, Dominguez M, Puri V, Sharma DK, Wheatley KNCL, Marks DL et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest 2002; 109: 1541–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanlioglu S, Benson P, Yang J, Atkinson E, Reynolds T, Engelhardt J . Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol 2000; 74: 9184–9196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bantel-Schaal U, Huband B, Kartenbeck J . Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J Virol 2002; 76: 2340–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsai B . Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 2007; 23: 23–43.

    Article  CAS  PubMed  Google Scholar 

  38. Wiethoff CM, Wodrich H, Gerace L, Nemerow GR . Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 2005; 79: 1992–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farr GA, Zhang L, Tattersall P . Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Nat Acad Sci USA 2005; 102: 17148–17153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Richards RM, Lowy DR, Schiler JT, Day PM . Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Nat Acad Sci USA 2006; 103: 1522–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G . Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 1992; 267: 16396–16402.

    CAS  PubMed  Google Scholar 

  42. Liu G, Thomas L, Warren RA, Enns CA, Cunningham CC, Hartwig JH et al. Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway. J Cell Biol 1997; 139: 1719–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan Z, Zak R, Luxton GWG, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maxfield FR, McGraw TE . Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5: 121–132.

    Article  CAS  PubMed  Google Scholar 

  46. Gruenberg J . The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2001; 2: 721–730.

    Article  CAS  PubMed  Google Scholar 

  47. Mayor S, Presley JF, Maxfield FR . Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol 1993; 121: 1257–1269.

    Article  CAS  PubMed  Google Scholar 

  48. Mellman I, Warren G . The road taken: past and future foundations of membrane traffic. Cell 2000; 100: 99–112.

    Article  CAS  PubMed  Google Scholar 

  49. Watanabe R, Asakura K, Rodriguez M, Pagano R . Internalization and sorting of plasma membrane sphingolipid analogues in differentiating oligodendrocytes. J Neurochem 1999; 73: 1375–1383.

    Article  CAS  PubMed  Google Scholar 

  50. Mukherjee S, Soe TT, Maxfield FR . Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 1999; 144: 1271–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dimitrov DS . Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2004; 2: 109–122.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tijssen P et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83: 973–978.

    Article  CAS  PubMed  Google Scholar 

  53. Vihinen-Ranta M, Kalela A, Makinen P, Kakkola L, Marjomaki V, Vuento M . Intracellular route of canine parvovirus entry. J Virol 1998; 72: 802–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mudhakir D, Harashima H . Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J 2009; 11: 65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Akache B, Grimm D, Shen X, Fuess S, Yant SR, Glazer DS et al. A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8. Mol Ther 2006; 15: 330–339.

    Article  Google Scholar 

  56. Auricchio A, Hildinger M, O’Connor E, Gao G, Wilson J . Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 2001; 12: 71–76.

    Article  CAS  PubMed  Google Scholar 

  57. Conway J, Rhys C, Zolotukhin I, Zolotukhin S, Muzyczka N, Hayward G et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Therapy 1999; 6: 986–993.

    Article  CAS  PubMed  Google Scholar 

  58. Joo K-I, Tai A, Lee C-L, Wong C, Wang P . Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins. Microsc Res Tech 2010; 73: 886–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01AI68978 and P01CA132681) and a translational acceleration grant from the Joint Center for Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K-I Joo or P Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Joo, KI. & Wang, P. Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells. Gene Ther 20, 308–317 (2013). https://doi.org/10.1038/gt.2012.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.41

Keywords

This article is cited by

Search

Quick links