Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intracellular transport of recombinant adeno-associated virus vectors

Abstract

Recombinant adeno-associated viral vectors (rAAVs) have been widely used for gene delivery in animal models, and are currently evaluated for human gene therapy after successful clinical trials in the treatment of inherited, degenerative or acquired diseases, such as Leber congenital amaurosis, Parkinson disease or heart failure. However, limitations in vector tropism, such as limited tissue specificity and insufficient transduction efficiencies of particular tissues and cell types, still preclude therapeutic applications in certain tissues. Wild-type adeno-associated viruses (AAVs) are defective viruses that require the presence of a helper virus to complete their life cycle. On the one hand, this unique property makes AAV vectors one of the safest available viral vectors for gene delivery. On the other, it also represents a potential obstacle because rAAV vectors have to overcome several biological barriers in the absence of a helper virus to transduce successfully a cell. Consequently, a better understanding of the cellular roadblocks that limit rAAV gene delivery is crucial and, during the last 15 years, numerous studies resulted in an expanding body of knowledge of the intracellular trafficking pathways of rAAV vectors. This review describes our current understanding of the mechanisms involved in rAAV attachment to target cells, endocytosis, intracellular trafficking, capsid processing, nuclear import and genome release with an emphasis on the most recent discoveries in the field and the emerging strategies used to improve the efficiency of AAV-derived vectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kaneda Y . Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 2010; 7: 1079–1093.

    Article  CAS  PubMed  Google Scholar 

  2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  3. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  4. Kohn DB, Candotti F . Gene therapy fulfilling its promise. N Engl J Med 2009; 360: 518–521.

    Article  CAS  PubMed  Google Scholar 

  5. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    Article  CAS  PubMed  Google Scholar 

  6. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herzog RW, Cao O, Srivastava A . Two decades of clinical gene therapy--success is finally mounting. Discov Med 2010; 9: 105–111.

    PubMed  PubMed Central  Google Scholar 

  8. Hoggan MD, Blacklow NR, Rowe WP . Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA 1966; 55: 1467–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kerr JR . Parvoviruses. Hodder Arnold; Distributed in the United States of America by Oxford University Press: London, New York, 2006.

    Google Scholar 

  10. Sun JY, Anand-Jawa V, Chatterjee S, Wong KK . Immune responses to adeno-associated virus and its recombinant vectors. Gene Therapy 2003; 10: 964–976.

    Article  CAS  PubMed  Google Scholar 

  11. Sonntag F, Schmidt K, Kleinschmidt JA . A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci USA 2010; 107: 10220–10225.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Samulski RJ, Berns KI, Tan M, Muzyczka N . Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79: 2077–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laughlin CA, Tratschin JD, Coon H, Carter BJ . Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 1983; 23: 65–73.

    Article  CAS  PubMed  Google Scholar 

  14. Hermonat PL, Muzyczka N . Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81: 6466–6470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tratschin JD, West MH, Sandbank T, Carter BJ . A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 1984; 4: 2072–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong JY, Fan PD, Frizzell RA . Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 1996; 7: 2101–2112.

    Article  CAS  PubMed  Google Scholar 

  17. Duan D, Yan Z, Yue Y, Ding W, Engelhardt JF . Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol 2001; 75: 7662–7671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grimm D, Kay MA . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    Article  CAS  PubMed  Google Scholar 

  20. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  21. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  22. Podsakoff G, Wong Jr KK, Chatterjee S . Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 1994; 68: 5656–5666.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE . Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 2010; 3: 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A . Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  27. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  28. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80: 8961–8969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol 2005; 79: 609–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiu J, Brown KE . Integrin alphaVbeta5 is not involved in adeno-associated virus type 2 (AAV2) infection. Virology 1999; 264: 436–440.

    Article  CAS  PubMed  Google Scholar 

  32. Wallen AJ, Barker GA, Fein DE, Jing H, Diamond SL . Enhancers of adeno-associated virus AAV2 transduction via high throughput siRNA screening. Mol Ther 2011; 19: 1152–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen CL, Jensen RL, Schnepp BC, Connell MJ, Shell R, Sferra TJ et al. Molecular characterization of adeno-associated viruses infecting children. J Virol 2005; 79: 14781–14792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 2003; 77: 11072–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalia M, Jameel S . Virus entry paradigms. Amino Acids 2011; 41: 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  36. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL . An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993; 259: 1918–1921.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt M, Chiorini JA . Gangliosides are essential for bovine adeno-associated virus entry. J Virol 2006; 80: 5516–5522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levy HC, Bowman VD, Govindasamy L, McKenna R, Nash K, Warrington K et al. Heparin binding induces conformational changes in adeno-associated virus serotype 2. J Struct Biol 2009; 165: 146–156.

    Article  CAS  PubMed  Google Scholar 

  39. Duan D, Li Q, Kao AW, Yue Y, Pessin JE, Engelhardt JF . Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol 1999; 73: 10371–10376.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bartlett JS, Wilcher R, Samulski RJ . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 2000; 74: 2777–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mayor S, Pagano RE . Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8: 603–612.

    Article  CAS  PubMed  Google Scholar 

  42. Doherty GJ, McMahon HT . Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857–902.

    Article  CAS  PubMed  Google Scholar 

  43. Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt JF . Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol 2000; 74: 9184–9196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanlioglu AD, Karacay B, Benson PK, Engelhardt JF, Sanlioglu S . Novel approaches to augment adeno-associated virus type-2 endocytosis and transduction. Virus Res 2004; 104: 51–59.

    Article  CAS  PubMed  Google Scholar 

  45. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    Article  CAS  PubMed  Google Scholar 

  46. Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL . Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 1996; 382: 177–179.

    Article  CAS  PubMed  Google Scholar 

  47. Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, Symons M . Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol 2000; 10: 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  48. Meier O, Greber UF . Adenovirus endocytosis. J Gene Med 2004; 6 (Suppl 1): S152–S163.

    Article  PubMed  Google Scholar 

  49. Nonnenmacher M, Weber T . Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2011; 10: 563–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wittrup A, Zhang SH, Svensson KJ, Kucharzewska P, Johansson MC, Morgelin M et al. Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc Natl Acad Sci USA 2010; 107: 13342–13347.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Douar AM, Poulard K, Stockholm D, Danos O . Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75: 1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Richardson WD, Westphal H . A cascade of adenovirus early functions is required for expression of adeno-associated virus. Cell 1981; 27 (1 Part 2): 133–141.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson J, Li C, Diprimio N, Weinberg M, McCown T, Samulski R . Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction. J Virol 2010; 84: 8888–8902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao W, Warrington Jr KH, Hearing P, Hughes J, Muzyczka N . Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J Virol 2002; 76: 11505–11517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rafii S, Dias S, Meeus S, Hattori K, Ramachandran R, Feuerback F et al. Infection of endothelium with E1(-)E4(+), but not E1(-)E4(-), adenovirus gene transfer vectors enhances leukocyte adhesion and migration by modulation of ICAM-1, VCAM-1, CD34, and chemokine expression. Circ Res 2001; 88: 903–910.

    Article  CAS  PubMed  Google Scholar 

  56. Chung SH, Frese KK, Weiss RS, Prasad BV, Javier RT . A new crucial protein interaction element that targets the adenovirus E4-ORF1 oncoprotein to membrane vesicles. J Virol 2007; 81: 4787–4797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas MA, Broughton RS, Goodrum FD, Ornelles DA . E4orf1 limits the oncolytic potential of the E1B-55 K deletion mutant adenovirus. J Virol 2009; 83: 2406–2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bantel-Schaal U, Braspenning-Wesch I, Kartenbeck J . Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblasts. J Gen Virol 2009; 90 (Part 2): 317–322.

    Article  CAS  PubMed  Google Scholar 

  59. Bantel-Schaal U, Hub B, Kartenbeck J . Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J Virol 2002; 76: 2340–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Keiser NW, Yan Z, Zhang Y, Lei-Butters DC, Engelhardt JF . Unique characteristics of AAV1, 2, and 5 viral entry, intracellular trafficking, and nuclear import define transduction efficiency in HeLa cells. Hum Gene Ther 2011; 22: 1433–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A . Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74: 992–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miao CH, Nakai H, Thompson AR, Storm TA, Chiu W, Snyder RO et al. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J Virol 2000; 74: 3793–3803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Pasquale G, Chiorini J . AAV transcytosis through barrier epithelia and endothelium. Mol Ther 2006; 13: 506–516.

    Article  CAS  PubMed  Google Scholar 

  64. Di Pasquale G, Kaludov N, Agbandje-McKenna M, Chiorini JA . BAAV transcytosis requires an interaction with beta-1-4 linked- glucosamine and gp96. PLoS ONE 2010; 5: e9336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA . Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol 2006; 80: 11040–11054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pajusola K, Gruchala M, Joch H, Luscher TF, Yla-Herttuala S, Bueler H . Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol 2002; 76: 11530–11540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ding W, Zhang LN, Yeaman C, Engelhardt JF . rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol Ther 2006; 13: 671–682.

    Article  CAS  PubMed  Google Scholar 

  68. Bonifacino JS, Rojas R . Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006; 7: 568–579.

    Article  CAS  PubMed  Google Scholar 

  69. Johannes L, Popoff V . Tracing the retrograde route in protein trafficking. Cell 2008; 135: 1175–1187.

    Article  CAS  PubMed  Google Scholar 

  70. Pelkmans L, Kartenbeck J, Helenius A . Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001; 3: 473–483.

    Article  CAS  PubMed  Google Scholar 

  71. Mannova P, Forstova J . Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J Virol 2003; 77: 1672–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM . Retrograde transport pathways utilised by viruses and protein toxins. J Virol 2006; 3: 26.

    Article  CAS  Google Scholar 

  73. Nam HJ, Gurda BL, McKenna R, Potter M, Byrne B, Salganik M et al. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking. J Virol 2011; 85: 11791–11799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kronenberg S, Bottcher B, von der Lieth CW, Bleker S, Kleinschmidt JA . A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J Virol 2005; 79: 5296–5303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tijssen P et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83 (Part 5): 973–978.

    Article  CAS  PubMed  Google Scholar 

  76. Grieger JC, Johnson JS, Gurda-Whitaker B, Agbandje-McKenna M, Samulski RJ . Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions. J Virol 2007; 81: 7833–7843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stahnke S, Lux K, Uhrig S, Kreppel F, Hösel M, Coutelle O et al. Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles. Virology 2011; 409: 77–83.

    Article  CAS  PubMed  Google Scholar 

  78. Stahnke S, Lux K, Uhrig S, Kreppel F, Hosel M, Coutelle O et al. Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles. Virology 2011; 409: 77–83.

    Article  CAS  PubMed  Google Scholar 

  79. Grieger JC, Snowdy S, Samulski RJ . Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol 2006; 80: 5199–5210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Richards RM, Lowy DR, Schiller JT, Day PM . Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 2006; 103: 1522–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S, Tsai B . ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 2005; 20: 289–300.

    Article  CAS  PubMed  Google Scholar 

  82. Wang K, Guan T, Cheresh DA, Nemerow GR . Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin beta5. J Virol 2000; 74: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnson JS, Gentzsch M, Zhang L, Ribeiro CM, Kantor B, Kafri T et al. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis. PLoS Pathog 2011; 7: e1002053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Akache B, Grimm D, Shen X, Fuess S, Yant SR, Glazer DS et al. A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8. Mol Ther 2007; 15: 330–339.

    Article  CAS  PubMed  Google Scholar 

  85. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson J, Samulski R . Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83: 2632–2644.

    Article  CAS  PubMed  Google Scholar 

  87. Hoque M, Ishizu K, Matsumoto A, Han SI, Arisaka F, Takayama M et al. Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation. J Virol 1999; 73: 7912–7915.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gorlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 1995; 5: 383–392.

    Article  CAS  PubMed  Google Scholar 

  89. Gorlich D, Kutay U . Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15: 607–660.

    Article  CAS  PubMed  Google Scholar 

  90. Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM . Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 2006; 126: 543–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qiu J, Brown KE . A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology 1999; 257: 373–382.

    Article  CAS  PubMed  Google Scholar 

  92. Bevington JM, Needham PG, Verrill KC, Collaco RF, Basrur V, Trempe JP . Adeno-associated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions. Virology 2007; 357: 102–113.

    Article  CAS  PubMed  Google Scholar 

  93. Cotmore SF, D’Abramo Jr AM, Ticknor CM, Tattersall P . Controlled conformational transitions in the MVM virion expose the VP1 N-terminus and viral genome without particle disassembly. Virology 1999; 254: 169–181.

    Article  CAS  PubMed  Google Scholar 

  94. Ros C, Baltzer C, Mani B, Kempf C . Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability. Virology 2006; 345: 137–147.

    Article  CAS  PubMed  Google Scholar 

  95. Sipo I, Fechner H, Pinkert S, Suckau L, Wang X, Weger S et al. Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction. Gene Therapy 2007; 14: 1319–1329.

    Article  CAS  PubMed  Google Scholar 

  96. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L et al. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. Mol Ther 2007; 15: 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  99. Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A . Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem 2004; 279: 12714–12723.

    Article  CAS  PubMed  Google Scholar 

  100. Sanlioglu S, Engelhardt JF . Cellular redox state alters recombinant adeno-associated virus transduction through tyrosine phosphatase pathways. Gene Therapy 1999; 6: 1427–1437.

    Article  CAS  PubMed  Google Scholar 

  101. Latonen L, Moore HM, Bai B, Jaamaa S, Laiho M . Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 2011; 30: 790–805.

    Article  CAS  PubMed  Google Scholar 

  102. Condemine W, Takahashi Y, Le Bras M, de The H . A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J Cell Sci 2007; 120 (Part 18): 3219–3227.

    Article  CAS  PubMed  Google Scholar 

  103. Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L . Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci USA 2001; 98: 1012–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Opie SR, Warrington Jr KH, Agbandje-McKenna M, Zolotukhin S, Muzyczka N . Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol 2003; 77: 6995–7006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000; 74: 8635–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qing K, Khuntirat B, Mah C, Kube DM, Wang XS, Ponnazhagan S et al. Adeno-associated virus type 2-mediated gene transfer: correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo. J Virol 1998; 72: 1593–1599.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Qing K, Wang XS, Kube DM, Ponnazhagan S, Bajpai A, Srivastava A . Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression. Proc Natl Acad Sci USA 1997; 94: 10879–10884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mah C, Qing K, Khuntirat B, Ponnazhagan S, Wang XS, Kube DM et al. Adeno-associated virus type 2-mediated gene transfer: role of epidermal growth factor receptor protein tyrosine kinase in transgene expression. J Virol 1998; 72: 9835–9843.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jayandharan GR, Zhong L, Li B, Kachniarz B, Srivastava A . Strategies for improving the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2008; 15: 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  111. Zhong L, Li B, Jayandharan G, Mah C, Govindasamy L, Agbandje-McKenna M et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 2008; 381: 194–202.

    Article  CAS  PubMed  Google Scholar 

  112. Li M, Jayandharan G, Li B, Ling C, Ma W, Srivastava A et al. High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther 2010; 21: 1527–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jayandharan GR, Zhong L, Sack BK, Rivers AE, Li M, Li B et al. Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: therapeutic expression of factor IX at reduced vector doses. Hum Gene Ther 2010; 21: 271–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Markusic DM, Herzog RW, Aslanidi GV, Hoffman BE, Li B, Li M et al. High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol Ther 2010; 18: 2048–2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Petrs-Silva H, Dinculescu A, Li Q, Deng W-T, Pang J-J, Min S-H et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

    Article  CAS  PubMed  Google Scholar 

  116. Petrs-Silva H, Dinculescu A, Li Q, Min S-H, Chiodo V, Pang J-J et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

    Article  CAS  PubMed  Google Scholar 

  117. Qiao C, Zhang W, Yuan Z, Shin JH, Li J, Jayandharan GR et al. Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle. Hum Gene Ther 2010; 21: 1343–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grimm D, Kern A, Pawlita M, Ferrari F, Samulski R, Kleinschmidt J . Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Therapy 1999; 6: 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  119. Zeltner N, Kohlbrenner E, Clement N, Weber T, Linden RM . Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors. Gene Therapy 2010; 17: 872–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chapman MS, Rossmann MG . Single-stranded DNA-protein interactions in canine parvovirus. Structure 1995; 3: 151–162.

    Article  CAS  PubMed  Google Scholar 

  121. Lang SI, Boelz S, Stroh-Dege AY, Rommelaere J, Dinsart C, Cornelis JJ . The infectivity and lytic activity of minute virus of mice wild-type and derived vector particles are strikingly different. J Virol 2005; 79: 289–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ et al. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 2010; 84: 12945–12957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ . Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 2006; 80: 9093–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE . Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000; 2: 619–623.

    Article  CAS  PubMed  Google Scholar 

  125. Wang C, Wang CM, Clark KR, Sferra TJ . Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Therapy 2003; 10: 1528–1534.

    Article  CAS  PubMed  Google Scholar 

  126. Lebherz C, Maguire A, Tang W, Bennett J, Wilson JM . Novel AAV serotypes for improved ocular gene transfer. J Gene Med 2008; 10: 375–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Loiler SA, Tang Q, Clarke T, Campbell-Thompson ML, Chiodo V, Hauswirth W et al. Localized gene expression following administration of adeno-associated viral vectors via pancreatic ducts. Mol Ther 2005; 12: 519–527.

    Article  CAS  PubMed  Google Scholar 

  128. Kurzeder C, Koppold B, Sauer G, Pabst S, Kreienberg R, Deissler H . CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparan sulphate proteoglycans. Int J Mol Med 2007; 19: 325–333.

    CAS  PubMed  Google Scholar 

  129. Richter M, Iwata A, Nyhuis J, Nitta Y, Miller AD, Halbert CL et al. Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo. Physiol Genomics 2000; 2: 117–127.

    Article  CAS  PubMed  Google Scholar 

  130. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  131. Bartlett JS, Samulski RJ, McCown TJ . Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 1998; 9: 1181–1186.

    Article  CAS  PubMed  Google Scholar 

  132. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD . Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 1997; 94: 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Takeda S, Takahashi M, Mizukami H, Kobayashi E, Takeuchi K, Hakamata Y et al. Successful gene transfer using adeno-associated virus vectors into the kidney: comparison among adeno-associated virus serotype 1-5 vectors in vitro and in vivo. Nephron Exp Nephrol 2004; 96: e119–e126.

    Article  CAS  PubMed  Google Scholar 

  134. Blackburn SD, Steadman RA, Johnson FB . Attachment of adeno-associated virus type 3 H to fibroblast growth factor receptor 1. Arch Virol 2006; 151: 617–623.

    Article  CAS  PubMed  Google Scholar 

  135. Ling C, Lu Y, Kalsi JK, Jayandharan GR, Li B, Ma W et al. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum Gene Ther 2010; 21: 1741–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Glushakova LG, Lisankie MJ, Eruslanov EB, Ojano-Dirain C, Zolotukhin I, Liu C et al. AAV3-mediated transfer and expression of the pyruvate dehydrogenase E1 alpha subunit gene causes metabolic remodeling and apoptosis of human liver cancer cells. Mol Genet Metab 2009; 98: 289–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA . Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 2001; 75: 6884–6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 2000; 97: 3428–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  140. Walters RW, Yi SM, Keshavjee S, Brown KE, Welsh MJ, Chiorini JA et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 2001; 276: 20610–20616.

    Article  CAS  PubMed  Google Scholar 

  141. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 2003; 9: 1306–1312.

    Article  CAS  PubMed  Google Scholar 

  142. Seiler MP, Miller AD, Zabner J, Halbert CL . Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Hum Gene Ther 2006; 17: 10–19.

    Article  CAS  PubMed  Google Scholar 

  143. Weller ML, Amornphimoltham P, Schmidt M, Wilson PA, Gutkind JS, Chiorini JA . Epidermal growth factor receptor is a co-receptor for adeno-associated virus serotype 6. Nat Med 2010; 16: 662–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  145. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 2007; 18: 195–206.

    Article  CAS  PubMed  Google Scholar 

  149. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  150. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shen S, Byrant KD, Brown SM, Randell SH, Asokan A . Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 2011.

  152. Vandendriessche T, Thorrez L, Acosta-Sanchez A, Petrus I, Wang L, Ma L et al. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 2007; 5: 16–24.

    Article  CAS  PubMed  Google Scholar 

  153. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  154. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  PubMed  Google Scholar 

  155. Yue Y, Shin JH, Duan D . Whole body skeletal muscle transduction in neonatal dogs with AAV-9. Methods Mol Biol 2011; 709: 313–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bostick B, Ghosh A, Yue Y, Long C, Duan D . Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Therapy 2007; 14: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  157. Yan Z, Zak R, Zhang Y, Ding W, Godwin S, Munson K et al. Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol 2004; 78: 2863–2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang T, Hu J, Ding W, Wang X . Doxorubicin augments rAAV-2 transduction in rat neuronal cells. Neurochem Int 2009; 55: 521–528.

    Article  CAS  PubMed  Google Scholar 

  159. Hansen J, Qing K, Srivastava A . Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts. J Virol 2001; 75: 4080–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ju XD, Lou SQ, Wang WG, Peng JQ, Tian H . Effect of hydroxyurea and etoposide on transduction of human bone marrow mesenchymal stem and progenitor cell by adeno-associated virus vectors. Acta Pharmacol Sin 2004; 25: 196–202.

    CAS  PubMed  Google Scholar 

  161. Russell DW, Alexander IE, Miller AD . DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc Natl Acad Sci USA 1995; 92: 5719–5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Qing K, Li W, Zhong L, Tan M, Hansen J, Weigel-Kelley KA et al. Adeno-associated virus type 2-mediated gene transfer: role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo. J Virol 2003; 77: 2741–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhong L, Li B, Mah C, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7827–7832.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kauss MA, Smith LJ, Zhong L, Srivastava A, Wong KK, Chatterjee S . Enhanced long-term transduction and multilineage engraftment of human hematopoietic stem cells transduced with tyrosine-modified recombinant adeno-associated virus serotype 2. Hum Gene Ther 2010; 21: 1129–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all those whose work has not been cited as a result of space limitations. This work was supported by US National Institutes of Health Grants HL077322 (to TW), and HL100396 and HL088434 (to Roger J Hajjar, Mount Sinai School of Medicine, New York, NY, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Weber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonnenmacher, M., Weber, T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 19, 649–658 (2012). https://doi.org/10.1038/gt.2012.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.6

Keywords

This article is cited by

Search

Quick links