Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Percutaneous methods of vector delivery in preclinical models

Abstract

Cardiovascular disease remains a leading cause of hospitalization and mortality worldwide. Conventional heart failure treatment is making steady and substantial progress to reduce the burden of disease. Nevertheless novel therapies and especially cardiac gene therapy have been emerging in the past and successfully made their way into first clinical trials. Gene therapy was initially a visionary treatment strategy for inherited, monogenetic diseases but has now developed to have potential for polygenic diseases as atherosclerosis, arrhythmias and heart failure. These novel therapeutic strategies require testing in clinically relevant animal models to transition from ‘bench to bedside’. One of the major hurdles for effective cardiovascular gene therapy is the delivery of the viral vectors to the heart. In this review we present the currently available vector-mediated cardiac gene delivery methods in vivo considering the specific merits and deficiencies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al. Disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 2011; 123: e18–e209.

    Article  Google Scholar 

  2. Bolli R . Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 2004; 95: 125–134.

    Article  CAS  Google Scholar 

  3. Yarbrough WM, Spinale FG . Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol 2003; 10: 77–86.

    Article  Google Scholar 

  4. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  Google Scholar 

  5. Logeart D, Hatem SN, Heimburger M, Le Roux A, Michel JB, Mercadier JJ . How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 2001; 12: 1601–1610.

    Article  CAS  Google Scholar 

  6. Sasano T, Kikuchi K, McDonald AD, Lai S, Donahue JK . Targeted high-efficiency, homogeneous myocardial gene transfer. J Mol Cell Cardiol 2007; 42: 954–961.

    Article  CAS  Google Scholar 

  7. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51: 1112–1119.

    Article  CAS  Google Scholar 

  8. Karakikes I, Hadri L, Rapti K, Ladage D, Ishikawa K, Tilemann L et al. Concomitant intravenous nitroglycerin with intracoronary delivery of AAV1.SERCA2a enhances gene transfer in porcine hearts. Mol Ther 2012; 20: 565–571.

    Article  CAS  Google Scholar 

  9. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM . Microbubble-enhanced ultrasound for vascular gene delivery. Gene Therapy 2000; 7: 2023–2027.

    Article  CAS  Google Scholar 

  10. Bekeredjian R, Grayburn PA, Shohet RV . Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005; 45: 329–335.

    Article  CAS  Google Scholar 

  11. Hoshino K, Kimura T, De Grand AM, Yoneyama R, Kawase Y, Houser S et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Therapy 2006; 13: 1320–1327.

    Article  CAS  Google Scholar 

  12. Hayase M . Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol 2005; 288: H2995–H3000.

    Article  CAS  Google Scholar 

  13. Parsa CJ, Reed RC, Walton GB, Pascal LS, Thompson RB, Petrofski JA et al. Catheter-mediated subselective intracoronary gene delivery to the rabbit heart: introduction of a novel method. J Gene Med 2005; 7: 595–603.

    Article  Google Scholar 

  14. Suzuki G, Lee TC, Fallavollita JA, Canty JM . Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 2005; 96: 767–775.

    Article  CAS  Google Scholar 

  15. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 2007; 50: 253–260.

    Article  CAS  Google Scholar 

  16. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy 2000; 7: 232–240.

    Article  CAS  Google Scholar 

  17. Raake P, von Degenfeld G, Hinkel R, Vachenauer R, Sandner T, Beller S et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 2004; 44: 1124–1129.

    Article  CAS  Google Scholar 

  18. McLean JW, Fox EA, Baluk P, Bolton PB, Haskell A, Pearlman R et al. Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am J Physiol 1997; 273: H387–H404.

    CAS  PubMed  Google Scholar 

  19. Müller OJ, Katus HA, Bekeredjian R . Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc Res 2007; 73: 453–462.

    Article  Google Scholar 

  20. French BA, Mazur W, Geske RS, Bolli R . Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994; 90: 2414–2424.

    Article  CAS  Google Scholar 

  21. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ . Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv 2002; 55: 392–397.

    Article  Google Scholar 

  22. Anderl JN, Robey TE, Stayton PS, Murry CE . Retention and biodistribution of microspheres injected into ischemic myocardium. J Biomed Mater Res 2009; 88A: 704–710.

    Article  CAS  Google Scholar 

  23. Schneider C, Jaquet K, Malisius R, Geidel S, Bahlmann E, Boczor S et al. Attenuation of cardiac remodelling by endocardial injection of erythropoietin: ultrasonic strain-rate imaging in a model of hibernating myocardium. Eur Heart J 2007; 28: 499–509.

    Article  Google Scholar 

  24. Gwon HC, Jeong JO, Kim HJ, Park SW, Lee SH, Park SJ et al. The feasibility and safety of fluoroscopy-guided percutaneous intramyocardial gene injection in porcine heart. Int J Cardiol 2001; 79: 77–88.

    Article  CAS  Google Scholar 

  25. Kornowski R, Leon MB, Fuchs S, Vodovotz Y, Flynn MA, Gordon DA et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000; 35: 1031–1039.

    Article  CAS  Google Scholar 

  26. Vale PR, Losordo DW, Tkebuchava T, Chen D, Milliken CE, Isner JM . Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J Am Coll Cardiol 1999; 34: 246–254.

    Article  CAS  Google Scholar 

  27. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 2003; 108: 2899–2904.

    Article  Google Scholar 

  28. Fujii H, Sun Z, Li SH, Wu J, Fazel S, Weisel RD et al. Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging 2009; 2: 869–879.

    Article  Google Scholar 

  29. Thompson CA, Nasseri BA, Makower J, Houser S, McGarry M, Lamson T et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 2003; 41: 1964–1971.

    Article  Google Scholar 

  30. Boulanger B, Yuan Z, Flessner M, Hay J, Johnston M . Pericardial fluid absorption into lymphatic vessels in sheep. Microvasc Res 1999; 57: 174–186.

    Article  CAS  Google Scholar 

  31. Xiao YF, Sigg DC, Ujhelyi MR, Wilhelm JJ, Richardson ES, Iaizzo PA . Pericardial delivery of omega-3 fatty acid: a novel approach to reducing myocardial infarct sizes and arrhythmias. Am J Physiol Heart Circ Physiol 2008; 294: H2212–H2218.

    Article  CAS  Google Scholar 

  32. Sosa E, Scanavacca M, d’Avila A . Gaining access to the pericardial space. Am J Cardiol 2002; 90: 203–204.

    Article  Google Scholar 

  33. Lazarous DF, Shou M, Stiber JA, Hodge E, Thirumurti V, Gonçalves L et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999; 44: 294–302.

    Article  CAS  Google Scholar 

  34. Vassalli G, Büeler H, Dudler J, Segesser von LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229–238.

    Article  Google Scholar 

  35. Waxman S, Moreno R, Rowe KA, Verrier RL . Persistent primary coronary dilation induced by transatrial delivery of nitroglycerin into the pericardial space: a novel approach for local cardiac drug delivery. J Am Coll Cardiol 1999; 33: 2073–2077.

    Article  CAS  Google Scholar 

  36. Ayers GM, Rho TH, Ben-David J, Besch HR, Zipes DP . Amiodarone instilled into the canine pericardial sac migrates transmurally to produce electrophysiologic effects and suppress atrial fibrillation. J Cardiovasc Electrophysiol 1996; 7: 713–721.

    Article  CAS  Google Scholar 

  37. Ladage D, Turnbull IC, Ishikawa K, Takewa Y, Rapti K, Morel C et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Therapy 2011; 18: 979–985.

    Article  CAS  Google Scholar 

  38. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC . Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 1999; 22: I23–I29.

    Article  CAS  Google Scholar 

  39. Maisch B, Ristiæ AD, Rupp H, Spodick DH . Pericardial access using the PerDUCER and flexible percutaneous pericardioscopy. Am J Cardiol 2001; 88: 1323–1326.

    Article  CAS  Google Scholar 

  40. Laham RJ, Simons M, Hung D . Subxyphoid access of the normal pericardium: a novel drug delivery technique. Catheter Cardiovasc Interv 1999; 47: 109–111.

    Article  CAS  Google Scholar 

  41. Kennedy UM, Mahony NJ . A cadaveric study of complications associated with the subxiphoid and transthoracic approaches to emergency pericardiocentesis. Eur J Emerg Med 2006; 13: 254–259.

    Article  Google Scholar 

  42. Mullens W, Dupont M, De Raedt H . Pneumopericardium after pericardiocentesis. Int J Cardiol 2007; 118: e57.

    Article  Google Scholar 

  43. Choi WH, Hwang YM, Park MY, Lee SJ, Lee HY, Kim SW et al. Pneumopericardium as a complication of pericardiocentesis. Korean Circ J 2011; 41: 280–282.

    Article  Google Scholar 

  44. Sosa E, Scanavacca M, d’Avila A, Pilleggi F . A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol 1996; 7: 531–536.

    Article  CAS  Google Scholar 

  45. Reddy VY, Wrobleski D, Houghtaling C, Josephson ME, Ruskin JN . Combined epicardial and endocardial electroanatomic mapping in a porcine model of healed myocardial infarction. Circulation 2003; 107: 3236–3242.

    Article  Google Scholar 

  46. Koruth JS, Aryana A, Dukkipati SR, Pak HN, Kim YH, Sosa EA et al. Unusual complications of percutaneous epicardial access and epicardial mapping and ablation of cardiac arrhythmias. Circ Arrhythm Electrophysiol 2011; 4: 882–888.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ladage.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladage, D., Ishikawa, K., Tilemann, L. et al. Percutaneous methods of vector delivery in preclinical models. Gene Ther 19, 637–641 (2012). https://doi.org/10.1038/gt.2012.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.14

Keywords

Search

Quick links