Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting S100A1 in heart failure

Abstract

Heart failure (HF) is the common endpoint of many cardiovascular diseases with a 1-year survival rate of about 50% in advanced stages. Despite increasing survival rates in the past years, current standard therapeutic strategies are far away from being optimal. For this reason, the concept of cardiac gene therapy for the treatment of HF holds great potential to improve disease progression, as it specifically targets key pathologies of diseased cardiomyocytes (CM). The small calcium (Ca2+)-binding protein S100A1 presents a promising target for cardiac gene therapy, as it has been identified as a central regulator of cardiac performance and the Ca2+-driven network within CM. S100A1 was shown to regulate sarcoplasmic reticulum, sarcomere and mitochondrial function by modulating target protein activity. Furthermore, deranged S100A1 expression has been linked to HF in human ischemic and dilated cardiomyopathies as well as in various HF animal models. Proof-of-concept studies in small and large animal models as wells as in human failing CM could demonstrate feasibility and efficacy of S100A1 genetically targeted therapy. This review summarizes the developmental steps of S100A1 gene therapy for the implementation into first human clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 2011; 123: e18–e209.

    Article  Google Scholar 

  2. WHO. Fact Sheet No. 317, 2011.

  3. Margulies KB, Bednarik DP, Dries DL . Genomics, transcriptional profiling, and heart failure. J Am Coll Cardiol 2009; 53: 1752–1759. Review.

    Article  CAS  Google Scholar 

  4. Houser SR, Margulies KB . Is depressed myocyte contractility centrally involved in heart failure? Circ Res 2003; 92: 350–358.

    Article  CAS  Google Scholar 

  5. Frey N, Olson EN . Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003; 65: 45–79.

    Article  CAS  Google Scholar 

  6. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008; 29: 2388–2442.

    Article  CAS  Google Scholar 

  7. Mehra MR, Uber PA, Francis GS . Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol 2003; 41: 1606–1610.

    Article  Google Scholar 

  8. Vinge LE, Raake PW, Koch WJ . Gene therapy in heart failure. Circ Res 2008; 102: 1458–1470.

    Article  CAS  Google Scholar 

  9. Bers DM . Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 2008; 70: 23–49.

    Article  CAS  Google Scholar 

  10. Hajjar RJ, del Monte F, Matsui T, Rosenzweig A . Prospects for gene therapy for heart failure. Circ Res 2000; 86: 616–621.

    Article  CAS  Google Scholar 

  11. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  Google Scholar 

  12. Donato R . Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1999; 1450: 191–231.

    Article  CAS  Google Scholar 

  13. Marenholz I, Heizmann CW, Fritz G . S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322: 1111–1122.

    Article  CAS  Google Scholar 

  14. Heizmann CW, Fritz G, Schafer BW . S100 proteins: structure, functions and pathology. Front Biosci 2002; 7: d1356–d1368.

    CAS  PubMed  Google Scholar 

  15. Salama I, Malone PS, Mihaimeed F, Jones JL . A review of the S100 proteins in cancer. Eur J Surg Oncol 2008; 34: 357–364.

    Article  CAS  Google Scholar 

  16. Zimmer DB, Chaplin J, Baldwin A, Rast M . S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol (Noisy-le-grand) 2005; 51: 201–214.

    CAS  Google Scholar 

  17. Wright NT, Varney KM, Ellis KC, Markowitz J, Gitti RK, Zimmer DB et al. The three-dimensional solution structure of Ca(2+)-bound S100A1 as determined by NMR spectroscopy. J Mol Biol 2005; 353: 410–426.

    Article  CAS  Google Scholar 

  18. Rustandi RR, Baldisseri DM, Inman KG, Nizner P, Hamilton SM, Landar A et al. Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry 2002; 41: 788–796.

    Article  CAS  Google Scholar 

  19. Donato R . Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 2003; 60: 540–551.

    Article  CAS  Google Scholar 

  20. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS . Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396: 201–214.

    Article  CAS  Google Scholar 

  21. Osterloh D, Ivanenkov VV, Gerke V . Hydrophobic residues in the C-terminal region of S100A1 are essential for target protein binding but not for dimerization. Cell Calcium 1998; 24: 137–151.

    Article  CAS  Google Scholar 

  22. Zimmer DB, Wright Sadosky P, Weber DJ . Molecular mechanisms of S100-target protein interactions. Microsc Res Tech 2003; 60: 552–559.

    Article  CAS  Google Scholar 

  23. Goch G, Vdovenko S, Kozlowska H, Bierzynski A . Affinity of S100A1 protein for calcium increases dramatically upon glutathionylation. FEBS J 2005; 272: 2557–2565.

    Article  CAS  Google Scholar 

  24. Wright NT, Cannon BR, Zimmer DB, Weber DJ . S100A1: structure, function, and therapeutic potential. Curr Chem Biol 2009; 3: 138–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhukova L, Zhukov I, Bal W, Wyslouch-Cieszynska A . Redox modifications of the C-terminal cysteine residue cause structural changes in S100A1 and S100B proteins. Biochim Biophys Acta 2004; 1742: 191–201.

    Article  CAS  Google Scholar 

  26. Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P . S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res 2010; 3: 525–537.

    Article  Google Scholar 

  27. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M et al. S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 2009; 47: 445–455.

    Article  CAS  Google Scholar 

  28. Volkers M, Rohde D, Goodman C, Most P . S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010; 2010: 178614.

    Article  Google Scholar 

  29. Kato K, Kimura S . S100ao (alpha alpha) protein is mainly located in the heart and striated muscles. Biochim Biophys Acta 1985; 842: 146–150.

    Article  CAS  Google Scholar 

  30. Kiewitz R, Lyons GE, Schafer BW, Heizmann CW . Transcriptional regulation of S100A1 and expression during mouse heart development. Biochim Biophys Acta 2000; 1498: 207–219.

    Article  CAS  Google Scholar 

  31. Haimoto H, Kato K . S100a0 (alpha alpha) protein in cardiac muscle. Isolation from human cardiac muscle and ultrastructural localization. Eur J Biochem 1988; 171: 409–415.

    Article  CAS  Google Scholar 

  32. Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J et al. Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension. Biochim Biophys Acta 2000; 1500: 249–255.

    Article  CAS  Google Scholar 

  33. Zimmer DB, Song W, Zimmer WE . Isolation of a rat S100 alpha cDNA and distribution of its mRNA in rat tissues. Brain Res Bull 1991; 27: 157–162.

    Article  CAS  Google Scholar 

  34. Kato K, Kimura S, Haimoto H, Suzuki F . S100a0 (alpha alpha) protein: distribution in muscle tissues of various animals and purification from human pectoral muscle. J Neurochem 1986; 46: 1555–1560.

    Article  CAS  Google Scholar 

  35. Pleger ST, Harris DM, Shan C, Vinge LE, Chuprun JK, Berzins B et al. Endothelial S100A1 modulates vascular function via nitric oxide. Circ Res 2008; 102: 786–794.

    Article  CAS  Google Scholar 

  36. Desjardins JF, Pourdjabbar A, Quan A, Leong-Poi H, Teichert-Kuliszewska K, Verma S et al. Lack of S100A1 in mice confers a gender-dependent hypertensive phenotype and increased mortality after myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 296: H1457–H1465.

    Article  CAS  Google Scholar 

  37. Lefranc F, Decaestecker C, Brotchi J, Heizmann CW, Dewitte O, Kiss R et al. Co-expression/co-location of S100 proteins (S100B, S100A1 and S100A2) and protein kinase C (PKC-beta, -eta and -zeta) in a rat model of cerebral basilar artery vasospasm. Neuropathol Appl Neurobiol 2005; 31: 649–660.

    Article  CAS  Google Scholar 

  38. Most P, Pleger ST, Volkers M, Heidt B, Boerries M, Weichenhan D et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest 2004; 114: 1550–1563.

    Article  CAS  Google Scholar 

  39. Kiewitz R, Acklin C, Schafer BW, Maco B, Uhrik B, Wuytack F et al. Ca2+ -dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+ -ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun 2003; 306: 550–557.

    Article  CAS  Google Scholar 

  40. Kettlewell S, Most P, Currie S, Koch WJ, Smith GL . S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes. J Mol Cell Cardiol 2005; 39: 900–910.

    Article  CAS  Google Scholar 

  41. Most P, Boerries M, Eicher C, Schweda C, Volkers M, Wedel T et al. Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes. J Cell Sci 2005; 118: 421–431.

    Article  CAS  Google Scholar 

  42. Most P, Remppis A, Pleger ST, Loffler E, Ehlermann P, Bernotat J et al. Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem 2003; 278: 33809–33817.

    Article  CAS  Google Scholar 

  43. Most P, Seifert H, Gao E, Funakoshi H, Volkers M, Heierhorst J et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 2006; 114: 1258–1268.

    Article  CAS  Google Scholar 

  44. Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Borries M et al. S100A1: a regulator of myocardial contractility. Proc Natl Acad Sci USA 2001; 98: 13889–13894.

    Article  CAS  Google Scholar 

  45. Volkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR Jr., Wegner FV et al. S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 2007; 41: 135–143.

    Article  Google Scholar 

  46. Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G et al. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 1997; 36: 11496–11503.

    Article  CAS  Google Scholar 

  47. Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ et al. Ca2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol 2007; 27: 4365–4373.

    Article  CAS  Google Scholar 

  48. Leyva JA, Bianchet MA, Amzel LM . Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review). Mol Membr Biol 2003; 20: 27–33.

    Article  CAS  Google Scholar 

  49. Balaban RS . Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 2002; 34: 1259–1271.

    Article  CAS  Google Scholar 

  50. Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS et al. Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 2001; 81: 2297–2313.

    Article  CAS  Google Scholar 

  51. Fukushima H, Chung CS, Granzier H . Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium. J Biomed Biotechnol 2010; 2010: 727239.

    Article  Google Scholar 

  52. Maco B, Mandinova A, Durrenberger MB, Schafer BW, Uhrik B, Heizmann CW . Ultrastructural distribution of the S100A1 Ca2+-binding protein in the human heart. Physiol Res 2001; 50: 567–574.

    CAS  PubMed  Google Scholar 

  53. LeWinter MM, Wu Y, Labeit S, Granzier H . Cardiac titin: structure, functions and role in disease. Clin Chim Acta 2007; 375: 1–9.

    Article  CAS  Google Scholar 

  54. Remppis A, Most P, Loffler E, Ehlermann P, Bernotat J, Pleger S et al. The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes. Basic Res Cardiol 2002; 97 (Suppl 1): I56–I62.

    PubMed  Google Scholar 

  55. Brezova A, Heizmann CW, Uhrik B . Immunocytochemical localization of S100A1 in mitochondria on cryosections of the rat heart. Gen Physiol Biophys 2007; 26: 143–149.

    CAS  PubMed  Google Scholar 

  56. Remppis A, Greten T, Schafer BW, Hunziker P, Erne P, Katus HA et al. Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta 1996; 1313: 253–257.

    Article  Google Scholar 

  57. Brinks H, Rohde D, Voelkers M, Qiu G, Pleger ST, Herzog N et al. S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol 2011; 58: 966–973.

    Article  CAS  Google Scholar 

  58. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 2007; 115: 2506–2515.

    Article  CAS  Google Scholar 

  59. Pleger ST, Most P, Heidt B, Voelkers M, Hata JA, Katus HA et al. S100A1 gene transfer in myocardium. Eur J Med Res 2006; 11: 418–422.

    CAS  PubMed  Google Scholar 

  60. Pleger ST, Remppis A, Heidt B, Volkers M, Chuprun JK, Kuhn M et al. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther 2005; 12: 1120–1129.

    Article  CAS  Google Scholar 

  61. Pleger STSC, Kziencek J, Mueller O, Bekeredjian R, Remppis A et al. Retroinfusion-facilitated inotropic AAV9-S100A1 gene therapy restores global cardiac function in a clinically relevant pig heart failure model. Circulation 2008; 118: S_792.

    Article  Google Scholar 

  62. Du XJ, Cole TJ, Tenis N, Gao XM, Kontgen F, Kemp BE et al. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice. Mol Cell Biol 2002; 22: 2821–2829.

    Article  CAS  Google Scholar 

  63. Ackermann GE, Domenighetti AA, Deten A, Bonath I, Marenholz I, Pedrazzini T et al. S100A1 deficiency results in prolonged ventricular repolarization in response to sympathetic activation. Gen Physiol Biophys 2008; 27: 127–142.

    CAS  PubMed  Google Scholar 

  64. Hasenfuss G . Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998; 39: 60–76.

    Article  CAS  Google Scholar 

  65. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B et al. Animal models of cardiovascular diseases. J Biomed Biotechnol 2011; 2011: 497841.

    Article  Google Scholar 

  66. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 2011; 3: 92ra64.

    Article  CAS  Google Scholar 

  67. Belmonte SL, Margulies KB, Blaxall BC . S100A1: another step toward therapeutic development for heart failure. J Am Coll Cardiol 2011; 58: 974–976.

    Article  CAS  Google Scholar 

  68. Raake PW, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ et al. Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 2011; 90: 542–553.

    Article  CAS  Google Scholar 

  69. Kawase Y, Ladage D, Hajjar RJ . Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 2011; 57: 1169–1180.

    Article  Google Scholar 

  70. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–181.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants of the National Institute of Health (RO1 HL92130 and RO1 HL92130-02 S1 to PM), Deutsche Forschungsgemeinschaft (562/1-1 to PM), Deutesches Herzforschungszentrum (to PM) and Bundesministerium fuer Bildung und Forschung (01GU0572 to PM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Most.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritterhoff, J., Most, P. Targeting S100A1 in heart failure. Gene Ther 19, 613–621 (2012). https://doi.org/10.1038/gt.2012.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.8

Keywords

This article is cited by

Search

Quick links