Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cardiac gene therapy in large animals: bridge from bench to bedside

Abstract

Several clinical trials are evaluating gene transfer as a therapeutic approach to treat cardiac diseases. Although it has just started on the path to clinical application, recent advances in gene delivery technologies with increasing knowledge of underlying mechanisms raise great expectations for the cardiac gene therapy. Although in vivo experiments using small animals provide the therapeutic potential of gene transfer, there exist many fundamental differences between the small animal and the human hearts. Before applying the therapy to clinical patients, large animal studies are a prerequisite to validate the efficacy in an animal model more relevant to the human heart. Several key factors including vector type, injected dose, delivery method and targeted cardiac disease are all important factors that determine the therapeutic efficacy. Selecting the most optimal combination of these factors is essential for successful gene therapy. In addition to the efficacy, safety profiles need to be addressed as well. In this regard, large animal studies are best suited for comprehensive evaluation at the preclinical stages of therapeutic development to ensure safe and effective gene transfer. As the cardiac gene therapy expands its potential, large animal studies will become more important to bridge the bench side knowledge to the clinical arena.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Medical Association Declaration Of Helsinki Ethical Principles for Medical Research Involving Human Subjects. 59th WMA General Assembly, Seoul, October 2008. World Medical Association.

  3. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A . Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 1997; 95: 423–429.

    Article  CAS  PubMed  Google Scholar 

  4. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 2308–2311.

    Article  CAS  PubMed Central  Google Scholar 

  5. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51: 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  6. Beeri R, Chaput M, Guerrero JL, Kawase Y, Yosefy C, Abedat S et al. Gene delivery of sarcoplasmic reticulum calcium ATPase inhibits ventricular remodeling in ischemic mitral regurgitation. Circ Heart Fail 2010; 3: 627–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM . Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy 2008; 15: 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  8. Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 2008; 118: 614–624.

    Article  CAS  PubMed  Google Scholar 

  9. Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F et al. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Mol Ther 2010; 18: 1284–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swindle MM, Horneffer PJ, Gardner TJ, Gott VL, Hall TS, Stuart RS et al. Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine. Lab Anim Sci 1986; 36: 357–361.

    CAS  PubMed  Google Scholar 

  11. Ahmet I, Sawa Y, Iwata K, Matsuda H . Gene transfection of hepatocyte growth factor attenuates cardiac remodeling in the canine heart: a novel gene therapy for cardiomyopathy. J Thorac Cardiovasc Surg 2002; 124: 957–963.

    Article  CAS  PubMed  Google Scholar 

  12. Shirakawa Y, Sawa Y, Takewa Y, Tatsumi E, Kaneda Y, Taenaka Y et al. Gene transfection with human hepatocyte growth factor complementary DNA plasmids attenuates cardiac remodeling after acute myocardial infarction in goat hearts implanted with ventricular assist devices. J Thorac Cardiovasc Surg 2005; 130: 624–632.

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Yang ZJ, Ma DC, Wang LS, Xu SL, Zhang YR et al. Induction of collateral artery growth and improvement of post-infarct heart function by hepatocyte growth factor gene transfer. Acta Pharmacol Sin 2006; 27: 555–560.

    Article  CAS  PubMed  Google Scholar 

  14. Vera Janavel G, Crottogini A, Cabeza Meckert P, Cuniberti L, Mele A, Papouchado M et al. Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Therapy 2006; 13: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  15. Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J et al. Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 2009; 119: 845–856.

    Article  CAS  PubMed  Google Scholar 

  16. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996; 2: 534–539.

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki G, Lee TC, Fallavollita JA, Canty Jr JM . Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 2005; 96: 767–775.

    Article  CAS  PubMed  Google Scholar 

  18. Abegunewardene N, Schmidt KH, Vosseler M, Dreher M, Keller T, Hoffmann N et al. Local transient myocardial liposomal gene transfer of inducible nitric oxide synthase does not aggravate myocardial function and fibrosis and leads to moderate neovascularization in chronic myocardial ischemia in pigs. Microcirculation 2010; 17: 69–78.

    Article  CAS  PubMed  Google Scholar 

  19. Heilmann C, von Samson P, Schlegel K, Attmann T, von Specht BU, Beyersdorf F et al. Comparison of protein with DNA therapy for chronic myocardial ischemia using fibroblast growth factor-2. Eur J Cardiothorac Surg 2002; 22: 957–964.

    Article  PubMed  Google Scholar 

  20. Heilmann CA, Attmann T, Thiem A, Haffner E, Beyersdorf F, Lutter G . Gene therapy in cardiac surgery: intramyocardial injection of naked plasmid DNA for chronic myocardial ischemia. Eur J Cardiothorac Surg 2003; 24: 785–793.

    Article  PubMed  Google Scholar 

  21. Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L et al. Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 2011; 301: H530–H537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 2010; 106: 1893–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mi YF, Li XY, Tang LJ, Lu XC, Fu ZQ, Ye WH . Improvement in cardiac function after sarcoplasmic reticulum Ca2+-ATPase gene transfer in a beagle heart failure model. Chin Med J (Engl) 2009; 122: 1423–1428.

    CAS  Google Scholar 

  24. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 2007; 50: 253–260.

    Article  CAS  PubMed  Google Scholar 

  25. Mariani JA, Smolic A, Preovolos A, Byrne MJ, Power JM, Kaye DM . Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. Eur J Heart Fail 2011; 13: 247–253.

    Article  CAS  PubMed  Google Scholar 

  26. Leotta E, Patejunas G, Murphy G, Szokol J, McGregor L, Carbray J et al. Gene therapy with adenovirus-mediated myocardial transfer of vascular endothelial growth factor 121 improves cardiac performance in a pacing model of congestive heart failure. J Thorac Cardiovasc Surg 2002; 123: 1101–1113.

    Article  CAS  PubMed  Google Scholar 

  27. Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation 2004; 110: 330–336.

    Article  CAS  PubMed  Google Scholar 

  28. Sasano T, McDonald AD, Kikuchi K, Donahue JK . Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med 2006; 12: 1256–1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo Jr P et al. Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation 2009; 119: 19–27.

    Article  CAS  PubMed  Google Scholar 

  30. Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 2006; 114: 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  31. Cai J, Yi FF, Li YH, Yang XC, Song J, Jiang XJ et al. Adenoviral gene transfer of HCN4 creates a genetic pacemaker in pigs with complete atrioventricular block. Life Sci 2007; 80: 1746–1753.

    Article  CAS  PubMed  Google Scholar 

  32. Ruhparwar A, Kallenbach K, Klein G, Bara C, Ghodsizad A, Sigg DC et al. Adenylate-cyclase VI transforms ventricular cardiomyocytes into biological pacemaker cells. Tissue Eng Part A 2010; 16: 1867–1872.

    Article  CAS  PubMed  Google Scholar 

  33. Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo Jr P, Lorell BH, Potapova IA et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 2007; 116: 706–713.

    Article  PubMed  Google Scholar 

  34. Kleaveland JP, Kussmaul WG, Vinciguerra T, Diters R, Carabello BA . Volume overload hypertrophy in a closed-chest model of mitral regurgitation. Am J Physiol 1988; 254 (6 Part 2): H1034–H1041.

    CAS  PubMed  Google Scholar 

  35. Senni M, Redfield MM . Heart failure with preserved systolic function. A different natural history? J Am Coll Cardiol 2001; 38: 1277–1282.

    Article  CAS  PubMed  Google Scholar 

  36. Tsutsui H, Tsuchihashi M, Takeshita A . Mortality and readmission of hospitalized patients with congestive heart failure and preserved versus depressed systolic function. Am J Cardiol 2001; 88: 530–533.

    Article  CAS  PubMed  Google Scholar 

  37. Hart CY, Meyer DM, Tazelaar HD, Grande JP, Burnett Jr JC, Housmans PR et al. Load versus humoral activation in the genesis of early hypertensive heart disease. Circulation 2001; 104: 215–220.

    Article  CAS  PubMed  Google Scholar 

  38. Hirsch JC, Borton AR, Albayya FP, Russell MW, Ohye RG, Metzger JM . Comparative analysis of parvalbumin and SERCA2a cardiac myocyte gene transfer in a large animal model of diastolic dysfunction. Am J Physiol Heart Circ Physiol 2004; 286: H2314–H2321.

    Article  CAS  PubMed  Google Scholar 

  39. Aoyagi T, Mirsky I, Flanagan MF, Currier JJ, Colan SD, Fujii AM . Myocardial function in immature and mature sheep with pressure-overload hypertrophy. Am J Physiol 1992; 262 (4 Part 2): H1036–H1048.

    CAS  PubMed  Google Scholar 

  40. Ye Y, Gong G, Ochiai K, Liu J, Zhang J . High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation 2001; 103: 1570–1576.

    Article  CAS  PubMed  Google Scholar 

  41. Zachary I, Morgan RD . Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart 2011; 97: 181–189.

    Article  CAS  PubMed  Google Scholar 

  42. Guerrero M, Athota K, Moy J, Mehta LS, Laguens R, Crottogini A et al. Vascular endothelial growth factor-165 gene therapy promotes cardiomyogenesis in reperfused myocardial infarction. J Interv Cardiol 2008; 21: 242–251.

    Article  PubMed  Google Scholar 

  43. Furlani AP, Kalil RA, Castro I, Canedo-Delgado A, Barra M, Prates PR et al. Effects of therapeutic angiogenesis with plasmid VEGF165 on ventricular function in a canine model of chronic myocardial infarction. Rev Bras Cir Cardiovasc 2009; 24: 143–149.

    Article  PubMed  Google Scholar 

  44. Olea FD, De Lorenzi A, Cortes C, Cuniberti L, Fazzi L, Flamenco MD et al. Combined VEGF gene transfer and erythropoietin in ovine reperfused myocardial infarction. Int J Cardiol 2011; e-pub ahead of print 21 September 2011.

  45. Laguens R, Cabeza Meckert P, Vera Janavel G, De Lorenzi A, Lascano E, Negroni J et al. Cardiomyocyte hyperplasia after plasmid-mediated vascular endothelial growth factor gene transfer in pigs with chronic myocardial ischemia. J Gene Med 2004; 6: 222–227.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang D, Gai L, Fan R, Dong W, Wen Y . Efficacy and safety of therapeutic angiogenesis from direct myocardial administration of an adenoviral vector expressing vascular endothelial growth factor 165. Chin Med J (Engl) 2002; 115: 643–648.

    CAS  Google Scholar 

  47. Lazarous DF, Shou M, Stiber JA, Hodge E, Thirumurti V, Goncalves L et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999; 44: 294–302.

    Article  CAS  PubMed  Google Scholar 

  48. Tio RA, Tkebuchava T, Scheuermann TH, Lebherz C, Magner M, Kearny M et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 1999; 10: 2953–2960.

    Article  CAS  PubMed  Google Scholar 

  49. Laguens R, Cabeza Meckert P, Vera Janavel G, Del Valle H, Lascano E, Negroni J et al. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Therapy 2002; 9: 1676–1681.

    Article  CAS  PubMed  Google Scholar 

  50. Radke PW, Heinl-Green A, Frass OM, Griesenbach U, Ferrari S, Geddes DM et al. Effects of intramyocardial pVEGF165 delivery on regional myocardial blood flow: evidence for a spatial ‘delivery-efficacy’ mismatch. Gene Therapy 2004; 11: 1249–1255.

    Article  CAS  PubMed  Google Scholar 

  51. Choi JS, Kim KB, Han W, Kim DS, Park JS, Lee JJ et al. Efficacy of therapeutic angiogenesis by intramyocardial injection of pCK-VEGF165 in pigs. Ann Thorac Surg 2006; 82: 679–686.

    Article  PubMed  Google Scholar 

  52. Vera Janavel GL, De Lorenzi A, Cortes C, Olea FD, Cabeza Meckert P, Bercovich A et al. Effect of VEGF gene transfer on infarct size, left ventricular function and myocardial perfusion in sheep after two months of coronary artery occlusion. J Gene Med 2011; e-pub ahead of print 26 September 2011.

  53. Shim WS, Li W, Zhang L, Li S, Ong HC, Song IC et al. Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model. J Biomed Sci 2006; 13: 579–591.

    Article  CAS  PubMed  Google Scholar 

  54. Sayeed-Shah U, Mann MJ, Martin J, Grachev S, Reimold S, Laurence R et al. Complete reversal of ischemic wall motion abnormalities by combined use of gene therapy with transmyocardial laser revascularization. J Thorac Cardiovasc Surg 1998; 116: 763–769.

    Article  CAS  PubMed  Google Scholar 

  55. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998; 115: 168–176; discussion 176–7.

    Article  CAS  PubMed  Google Scholar 

  56. Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, Silvennoinen P, Kivela A et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 2004; 109: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  57. Gao MH, Lai NC, McKirnan MD, Roth DA, Rubanyi GM, Dalton N et al. Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4: report of preclinical data. Hum Gene Ther 2004; 15: 574–587.

    Article  CAS  PubMed  Google Scholar 

  58. Ahmet I, Sawa Y, Yamaguchi T, Matsuda H . Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thorac Surg 2003; 75: 1283–1287.

    Article  PubMed  Google Scholar 

  59. Rastogi S, Guerrero M, Wang M, Ilsar I, Sabbah MS, Gupta RC et al. Myocardial transfection with naked DNA plasmid encoding hepatocyte growth factor prevents the progression of heart failure in dogs. Am J Physiol Heart Circ Physiol 2011; 300: H1501–H1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Azuma J, Taniyama Y, Takeya Y, Iekushi K, Aoki M, Dosaka N et al. Angiogenic and antifibrotic actions of hepatocyte growth factor improve cardiac dysfunction in porcine ischemic cardiomyopathy. Gene Therapy 2006; 13: 1206–1213.

    Article  CAS  PubMed  Google Scholar 

  61. Yang Z, Wang W, Ma D, Zhang Y, Wang L, Xu S et al. Recruitment of stem cells by hepatocyte growth factor via intracoronary gene transfection in the postinfarction heart failure. Sci China C Life Sci 2007; 50: 748–752.

    Article  PubMed  Google Scholar 

  62. Cho KR, Choi JS, Hahn W, Kim DS, Park JS, Lee DS et al. Therapeutic angiogenesis using naked DNA expressing two isoforms of the hepatocyte growth factor in a porcine acute myocardial infarction model. Eur J Cardiothorac Surg 2008; 34: 857–863.

    Article  PubMed  Google Scholar 

  63. Carlsson M, Osman NF, Ursell PC, Martin AJ, Saeed M . Quantitative MR measurements of regional and global left ventricular function and strain after intramyocardial transfer of VM202 into infarcted swine myocardium. Am J Physiol Heart Circ Physiol 2008; 295: H522–H532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan B, Zhang Y, Zhao Z, Wu D, Yuan L, Wu B et al. Treatment of chronical myocardial ischemia by adenovirus-mediated hepatocyte growth factor gene transfer in minipigs. Sci China C Life Sci 2008; 51: 537–543.

    Article  PubMed  Google Scholar 

  65. Yang ZJ, Chen B, Sheng Z, Zhang DG, Jia EZ, Wang W et al. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium- and high-dose groups. Mol Biol Rep 2010; 37: 2075–2081.

    Article  CAS  PubMed  Google Scholar 

  66. Zuo H, Liu Z, Liu X, Yang J, Liu T, Wen S et al. CD151 gene delivery after myocardial infarction promotes functional neovascularization and activates FAK signaling. Mol Med 2009; 15: 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heinl-Green A, Radke PW, Munkonge FM, Frass O, Zhu J, Vincent K et al. The efficacy of a ‘master switch gene’ HIF-1alpha in a porcine model of chronic myocardial ischaemia. Eur Heart J 2005; 26: 1327–1332.

    Article  CAS  PubMed  Google Scholar 

  68. Pleger ST, Boucher M, Most P, Koch WJ . Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail 2007; 13: 401–414.

    Article  CAS  PubMed  Google Scholar 

  69. Communal C, Singh K, Sawyer DB, Colucci WS . Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation 1999; 100: 2210–2212.

    Article  CAS  PubMed  Google Scholar 

  70. Jones JM, Petrofski JA, Wilson KH, Steenbergen C, Koch WJ, Milano CA . beta2 adrenoceptor gene therapy ameliorates left ventricular dysfunction following cardiac surgery. Eur J Cardiothorac Surg 2004; 26: 1161–1168.

    Article  PubMed  Google Scholar 

  71. Jones JM, Wilson KH, Steenbergen C, Koch WJ, Milano CA . Dose dependent effects of cardiac beta2 adrenoceptor gene therapy. J Surg Res 2004; 122: 113–120.

    Article  CAS  PubMed  Google Scholar 

  72. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 1994; 264: 582–586.

    Article  CAS  PubMed  Google Scholar 

  73. Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S et al. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2000; 101: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  74. Edelberg JM, Huang DT, Josephson ME, Rosenberg RD . Molecular enhancement of porcine cardiac chronotropy. Heart 2001; 86: 559–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lai NC, Roth DM, Gao MH, Fine S, Head BP, Zhu J et al. Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation 2000; 102: 2396–2401.

    Article  CAS  PubMed  Google Scholar 

  76. Donahue JK, Heldman AW, Fraser H, McDonald AD, Miller JM, Rade JJ et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med 2000; 6: 1395–1398.

    Article  CAS  PubMed  Google Scholar 

  77. Bauer A, McDonald AD, Nasir K, Peller L, Rade JJ, Miller JM et al. Inhibitory G protein overexpression provides physiologically relevant heart rate control in persistent atrial fibrillation. Circulation 2004; 110: 3115–3120.

    Article  CAS  PubMed  Google Scholar 

  78. Kawase Y, Hajjar RJ . The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med 2008; 5: 554–565.

    Article  CAS  PubMed  Google Scholar 

  79. Xin W, Li X, Lu X, Niu K, Cai J . Improved cardiac function after sarcoplasmic reticulum Ca(2+)-ATPase gene transfer in a heart failure model induced by chronic myocardial ischaemia. Acta Cardiol 2011; 66: 57–64.

    Article  PubMed  Google Scholar 

  80. Xin W, Lu X, Li X, Niu K, Cai J . Attenuation of endoplasmic reticulum stress-related myocardial apoptosis by SERCA2a gene delivery in ischemic heart disease. Mol Med 2011; 17: 201–210.

    Article  CAS  PubMed  Google Scholar 

  81. Bish LT, Sleeper MM, Reynolds C, Gazzara J, Withnall E, Singletary GE et al. Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines. Hum Gene Ther 2011; 22: 969–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003; 111: 869–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 2011; 3: 92ra64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Greener I, Donahue JK . Gene therapy strategies for cardiac electrical dysfunction. J Mol Cell Cardiol 2011; 50: 759–765.

    Article  CAS  PubMed  Google Scholar 

  85. Amit G, Kikuchi K, Greener ID, Yang L, Novack V, Donahue JK . Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation 2010; 121: 2263–2270.

    Article  CAS  PubMed  Google Scholar 

  86. Soucek R, Thomas D, Kelemen K, Bikou O, Seyler C, Voss F et al. Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm 2011; e-pub ahead of print 9 September 2011.

  87. Trappe K, Thomas D, Bikou O, Kelemen K, Lugenbiel P, Voss F et al. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. Eur Heart J 2011; e-pub ahead of print 23 July 2011.

  88. Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res 2011; 92: 218–225.

    Article  CAS  PubMed  Google Scholar 

  89. Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 2004; 109: 506–512.

    Article  PubMed  Google Scholar 

  90. Qu J, Plotnikov AN, Danilo Jr P, Shlapakova I, Cohen IS, Robinson RB et al. Expression and function of a biological pacemaker in canine heart. Circulation 2003; 107: 1106–1109.

    Article  PubMed  Google Scholar 

  91. Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C et al. Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 2004; 24: 1435–1441.

    Article  CAS  PubMed  Google Scholar 

  92. Szelid Z, Pokreisz P, Liu X, Vermeersch P, Marsboom G, Gillijns H et al. Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial reperfusion injury. Basic Res Cardiol 2010; 105: 169–179.

    Article  CAS  PubMed  Google Scholar 

  93. Kupatt C, Wichels R, Deiss M, Molnar A, Lebherz C, Raake P et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Therapy 2002; 9: 518–526.

    Article  CAS  PubMed  Google Scholar 

  94. McTiernan CF, Mathier MA, Zhu X, Xiao X, Klein E, Swan CH et al. Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts. Gene Therapy 2007; 14: 1613–1622.

    Article  CAS  PubMed  Google Scholar 

  95. Heaton DA, Golding S, Bradley CP, Dawson TA, Cai S, Channon KM et al. Targeted nNOS gene transfer into the cardiac vagus rapidly increases parasympathetic function in the pig. J Mol Cell Cardiol 2005; 39: 159–164.

    Article  CAS  PubMed  Google Scholar 

  96. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther 2012; 20: 73–83.

    Article  CAS  PubMed  Google Scholar 

  97. Ladage D, Turnbull IC, Ishikawa K, Takewa Y, Rapti K, Morel C et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Therapy 2011; 18: 979–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229–238.

    Article  PubMed  Google Scholar 

  99. Ninomiya M, Koyama H, Miyata T, Hamada H, Miyatake S, Shigematsu H et al. Ex vivo gene transfer of basic fibroblast growth factor improves cardiac function and blood flow in a swine chronic myocardial ischemia model. Gene Therapy 2003; 10: 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  100. Wan S, George SJ, Nicklin SA, Yim AP, Baker AH . Overexpression of p53 increases lumen size and blocks neointima formation in porcine interposition vein grafts. Mol Ther 2004; 9: 689–698.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kawase.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, K., Tilemann, L., Ladage, D. et al. Cardiac gene therapy in large animals: bridge from bench to bedside. Gene Ther 19, 670–677 (2012). https://doi.org/10.1038/gt.2012.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.3

Keywords

This article is cited by

Search

Quick links