Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SDF-1 in myocardial repair

Abstract

Stem cell therapy for the prevention and treatment of cardiac dysfunction holds significant promise for patients with ischemic heart disease. Excitingly early clinical studies have demonstrated safety and some clinical feasibility, while at the same time studies in the laboratory have investigated mechanisms of action and strategies to optimize the effects of regenerative cardiac therapies. One of the key pathways that has been demonstrated critical in stem cell-based cardiac repair is (stromal cell-derived factor-1) SDF-1:CXCR4. SDF-1:CXCR4 has been shown to affect stem cell homing, cardiac myocyte survival and ventricular remodeling in animal studies of acute myocardial infarction and chronic heart failure. Recently released clinical data suggest that SDF-1 alone is sufficient to induce cardiac repair. Most importantly, studies like those on the SDF-1:CXCR4 axis have suggested mechanisms critical for cardiac regenerative therapies that if clinical investigators continue to ignore will result in poorly designed studies that will continue to yield negative results.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Askari A, Unzek S, Popovic ZB, Goldman CK, Forudi F, kiedrowski M et al. Effect of stromal-cell-derived factor-1 on stem cell homing and tissue regeneration in ischemic cardiomyopathy. Lancet 2003; 362: 697–703.

    Article  CAS  Google Scholar 

  2. Nelson TJ, Faustino RS, Chiriac A, Crespo-Diaz R, Behfar A, Terzic A . CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 2008; 26: 1464–1473.

    Article  CAS  Google Scholar 

  3. Deglurkar I, Mal N, Mills WR, Popovic ZB, McCarthy PM, Blackstone EH et al. Mechanical and electrical effects of cell based gene therapy for ischemic cardiomyopathy are independent. Hum Gene Ther 2006; 17: 1144–1151.

    Article  CAS  Google Scholar 

  4. Sundararaman S, Miller TJ, Pastore J, Kiedrowski MJ, Aras R, Penn MS . Plasmid based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Therapy 2011; 18: 867–873.

    Article  CAS  Google Scholar 

  5. Zhang M, Mal N, kiedrowski M, Chacko M, Askari AT, Popovic ZB et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 2007; 21: 3197–3207.

    Article  CAS  Google Scholar 

  6. Unzek S, Zhang M, Mal N, Mills WR, laurita KR, Penn MS . SDF-1 recruits cardiac stem cell like cells that depolarize in vivo. Cell Transplant 2007; 16: 879–886.

    Article  Google Scholar 

  7. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 2010; 107: 913–922.

    Article  CAS  Google Scholar 

  8. Dong F, Finan A, Weber K, Penn MS . Role of mesenchymal stem cell SDF-1 release and myocardial CXCR4 expression in post -MI cardiac repair. Circulation 2011; 124: A18178.

  9. Rodrigues CO, Shehadeh LA, Hoosien M, Otero V, Chopra I, Tsinoremas NF et al. Heterogeneity in SDF-1 expression defines the vasculogenic potential of adult cardiac progenitor cells. PLoS ONE 2011; 6: e24013.

    Article  CAS  Google Scholar 

  10. Penn MS, Zhang M, Deglurkar I, Topol EJ . Role of stem cell homing in myocardial regeneration. Int J Cardiol 2004; 95 (Suppl 1): S23–S25.

    Article  Google Scholar 

  11. Penn MS, Francis GS, Ellis SG, Young JB, McCarthy PM, Topol EJ . Autologous cell therapy for the treatment of damaged myocardium. Prog Cardiovasc Dis 2002; 45: 21–32.

    Article  Google Scholar 

  12. Penn MS, Pastore J, Aras R, Rouy D, Clemens R, Schaer GL et al. Initial results from a first-in-man study delivering non-viral gene therapy hSDF-1 (JVS-100) to treat ischemic heart failure. Mol Ther 2011; 19: S40.

    Google Scholar 

  13. Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT et al. LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J 2010; 37: 412–420.

    PubMed  PubMed Central  Google Scholar 

  14. Assmus B, Iwasaki M, Schachinger V, Roexe T, Koyanagi M, Iekushi K et al. Acute myocardial infarction activates progenitor cells and increases Wnt signalling in the bone marrow. Eur Heart Journal 2011; e-pub ahead of print 15 December 2011; doi:10.1093/eurheartj/ehr388.

  15. Schachinger V, Aicher A, Dobert N, Rover R, Diener J, Fichtlscherer S et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 2008; 118: 1425–1432.

    Article  Google Scholar 

  16. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355: 1210–1221.

    Article  CAS  Google Scholar 

  17. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–705.

    Article  CAS  Google Scholar 

  18. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344–10349.

    Article  CAS  Google Scholar 

  19. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 2010; 56: 721–734.

    Article  CAS  Google Scholar 

  20. Penn MS . Importance of the SDF-1:CXCR4 axis in myocardial repair. Circ Res 2009; 104: 1133–1135.

    Article  CAS  Google Scholar 

  21. Penn MS, Anwaruddin S, Nair R, Ellis S . From mice to men. Commonalities in physiology for stem cell-based cardiac repair. J Am Coll Cardiol 2009; 54: 2287–2289.

    Article  Google Scholar 

  22. Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R et al. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 2010; 19: 399–408.

    Article  Google Scholar 

  23. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C . Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 2005; 67: 1772–1784.

    Article  Google Scholar 

  24. Mayorga ME, Dong F, Sundararaman S, Huang Y, Jiang Y, Howe PH et al. Central role for disabled-2 in mesenchymal stem cell cardiac protein expression and functional consequences after engraftment in acute myocardial infarction. Stem Cells Dev 2011; 20: 681–693.

    Article  CAS  Google Scholar 

  25. Mayorga ME, Penn MS . miR-145 is differentially regulated by TGFβ1 and ischemia and targets disabled-2 expression and wnt/β-catenin activity. J Cell Mol Med 2011; e-pub ahead of print 18 July 2011; doi:10.1111/j.1582-4934.2011.01385.x.

  26. Schenk S, Mal N, Finan A, Zhang M, kiedrowski M, Popovic Z et al. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells 2007; 25: 245–251.

    Article  CAS  Google Scholar 

  27. Mills WR, Mal N, kiedrowski M, Unger R, Forudi F, Popovic ZB et al. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol 2007; 42: 304–314.

    Article  CAS  Google Scholar 

  28. Costa AR, Panda NC, Yong S, Mayorga ME, Pawlowski GP, Fan K et al. Optical mapping of cryoinjured rat myocardium grafted with mesenchymal stem cells. Am j physiol Heart circ physiol 2012; 302: H270–H277.

    Article  CAS  Google Scholar 

  29. Radke PW, Heinl-Green A, Frass OM, Griesenbach U, Ferrari S, Geddes DM et al. Effects of intramyocardial pVEGF165 delivery on regional myocardial blood flow: evidence for a spatial ‘delivery-efficacy’ mismatch. Gene therapy 2004; 11: 1249–1255.

    Article  CAS  Google Scholar 

  30. Carlsson M, Osman NF, Ursell PC, Martin AJ, Saeed M . Quantitative MR measurements of regional and global left ventricular function and strain after intramyocardial transfer of VM202 into infarcted swine myocardium. Am j physiol Heart circ physiol 2008; 295: H522–H532.

    Article  CAS  Google Scholar 

  31. Penn MS, Topol E . The challenge for stem cell therapy. In: Penn MS (ed). Stem Cells and Myocardial Regeneration. Humana Press: Totowa, 2007, pp 1–8.

    Chapter  Google Scholar 

  32. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  Google Scholar 

  33. Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 2011; 109: 428–436.

    Article  CAS  Google Scholar 

  34. Penn MS, Dong F, Klein S, Mayorga ME . Stem cells for myocardial regeneration. Clin pharmacol ther 2011; 90: 499–501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Juventas Therapeutics and the Skirball Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Penn.

Ethics declarations

Competing interests

Drs Aras, Miller and Pastore are employees of Juventas Therapeutics as such receive salary and stock options from the companies. Dr Penn is named as an inventor on patent applications filed for the use of SDF-1 for the treatment of ischemic tissue injury. He is the founder and chief medical officer of Juventas Therapeutics and SironRX Therapeutics. As such he receives consulting fees and stock options from the companies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penn, M., Pastore, J., Miller, T. et al. SDF-1 in myocardial repair. Gene Ther 19, 583–587 (2012). https://doi.org/10.1038/gt.2012.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.32

Keywords

This article is cited by

Search

Quick links