Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

RETRACTED ARTICLE: Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors

A Retraction to this article was published on 28 February 2020

Abstract

Tumor-tropic neural stem cells (NSCs) can be used in the Trojan horse approach as cellular vehicles for targeted delivery of therapeutic agents to distant tumor sites. To realize this cancer therapy potential, it is important to have a renewable source to generate large quantities of uniform human NSCs. Here, we reported that NSCs derived from HES1 human embryonic stem cell line were capable of migrating into intracranial glioma xenografts after systemic injection or after intracranial injection at a site distant from the tumor. To test whether the HES1-derived NSCs can be used for cancer gene therapy, we used a baculoviral vector to introduce the herpes simplex virus thymidine kinase suicide gene into the cells and demonstrated that baculovirus-mediated transgene expression may last for at least 3 weeks in NSCs. After being injected into the cerebral hemisphere opposite the tumor site and in the presence of ganciclovir, NSCs expressing the suicide gene were able to inhibit the growth of human glioma xenografts and prolong survival of tumor-bearing mice. Our findings suggest that human embryonic stem cells could potentially serve as a clinically viable source for production of cellular vehicles suitable for targeted anticancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 1998; 16: 1033–1039.

    CAS  PubMed  Google Scholar 

  2. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    CAS  PubMed  Google Scholar 

  3. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6: 447–450.

    CAS  PubMed  Google Scholar 

  4. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002; 62: 7170–7174.

    CAS  PubMed  Google Scholar 

  5. Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 2003; 14: 1777–1785.

    CAS  PubMed  Google Scholar 

  6. Lee J, Elkahloun AG, Messina SA, Ferrari N, Xi D, Smith CL et al. Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res 2003; 63: 8877–8889.

    CAS  PubMed  Google Scholar 

  7. Staflin K, Honeth G, Kalliomaki S, Kjellman C, Edvardsen K, Lindvall M . Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res 2004; 64: 5347–5354.

    CAS  PubMed  Google Scholar 

  8. Aboody KS, Bush RA, Garcia E, Metz MZ, Najbauer J, Justus KA et al. Development of a tumor-selective approach to treat metastatic cancer. PLoS One 2006; 1: e23.

    PubMed  PubMed Central  Google Scholar 

  9. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 2006; 12: 5550–5556.

    CAS  PubMed  Google Scholar 

  10. Yuan X, Hu J, Belladonna ML, Black KL, Yu JS . Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 2006; 66: 2630–2638.

    CAS  PubMed  Google Scholar 

  11. Dickson PV, Hamner JB, Burger RA, Garcia E, Ouma AA, Kim SU et al. Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-beta and restricts tumor growth in a murine model of disseminated neuroblastoma. J Pediatr Surg 2007; 42: 48–53.

    PubMed  Google Scholar 

  12. Miletic H, Fischer Y, Litwak S, Giroglou T, Waerzeggers Y, Winkeler A et al. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007; 15: 1373–1381.

    CAS  PubMed  Google Scholar 

  13. Shimato S, Natsume A, Takeuchi H, Wakabayashi T, Fujii M, Ito M et al. Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Therapy 2007; 14: 1132–1142.

    CAS  PubMed  Google Scholar 

  14. Lorico A, Mercapide J, Solodushko V, Alexeyev M, Fodstad O, Rappa G . Primary neural stem/progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma. Cancer Gene Ther 2008; 15: 605–615.

    CAS  PubMed  Google Scholar 

  15. Zhao Y, Wang S . Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum Gene Ther 2010; 21: 683–694.

    CAS  PubMed  Google Scholar 

  16. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  PubMed  Google Scholar 

  17. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F . HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    CAS  PubMed  Google Scholar 

  18. Liu H, Dow EC, Arora R, Kimata JT, Bull LM, Arduino RC et al. Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J Virol 2006; 80: 7765–7768.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang S, Balasundaram G . Potential cancer gene therapy by baculoviral transduction. Curr Gene Ther 2010; 10: 214–225.

    PubMed  Google Scholar 

  20. Kost TA, Condreay JP, Jarvis DL . Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 2005; 23: 567–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu YC . Baculoviral vectors for gene delivery: a review. Curr Gene Ther 2008; 8: 54–65.

    CAS  PubMed  Google Scholar 

  22. Abe T, Matsuura Y . Host innate immune responses induced by baculovirus in mammals. Curr Gene Ther 2010; 10: 226–231.

    CAS  PubMed  Google Scholar 

  23. Airenne KJ, Makkonen KE, Mahonen AJ, Yla-Herttuala S . In vivo application and tracking of baculovirus. Curr Gene Ther 2010; 10: 187–194.

    CAS  PubMed  Google Scholar 

  24. Zeng J, Du J, Zhao Y, Palanisamy N, Wang S . Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells 2007; 25: 1055–1061.

    CAS  PubMed  Google Scholar 

  25. Du J, Zeng J, Zhao Y, Boulaire J, Wang S . The combined use of viral transcriptional and post-transcriptional regulatory elements to improve baculovirus-mediated transient gene expression in human embryonic stem cells. J Biosci Bioeng 2010; 109: 1–8.

    CAS  PubMed  Google Scholar 

  26. Ho YC, Lee HP, Hwang SM, Lo WH, Chen HC, Chung CK et al. Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Therapy 2006; 13: 1471–1479.

    CAS  PubMed  Google Scholar 

  27. Bak XY, Yang J, Wang S . Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy. Cancer Gene Ther 2010; 17: 721–729.

    CAS  PubMed  Google Scholar 

  28. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000; 6: 271–277.

    CAS  PubMed  Google Scholar 

  29. Keyoung HM, Roy NS, Benraiss A, Louissaint Jr A, Suzuki A, Hashimoto M et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat Biotechnol 2001; 19: 843–850.

    CAS  PubMed  Google Scholar 

  30. Lee CM, Reddy EP . The v-myc oncogene. Oncogene 1999; 18: 2997–3003.

    CAS  PubMed  Google Scholar 

  31. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19: 1134–1140.

    CAS  PubMed  Google Scholar 

  32. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA . In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001; 19: 1129–1133.

    CAS  PubMed  Google Scholar 

  33. Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004; 22: 1246–1255.

    PubMed  Google Scholar 

  34. Tabar V, Panagiotakos G, Greenberg ED, Chan BK, Sadelain M, Gutin PH et al. Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 2005; 23: 601–606.

    CAS  PubMed  Google Scholar 

  35. Ying QL, Stavridis M, Griffiths D, Li M, Smith A . Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21: 183–186.

    CAS  PubMed  Google Scholar 

  36. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 2005; 3: e283.

    PubMed  PubMed Central  Google Scholar 

  37. Maisel M, Herr A, Milosevic J, Hermann A, Habisch HJ, Schwarz S et al. Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells 2007; 25: 1231–1240.

    CAS  PubMed  Google Scholar 

  38. Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 2004; 6: 287–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jurvansuu J, Zhao Y, Leung DS, Boulaire J, Yu YH, Ahmed S et al. Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells. Cancer Res 2008; 68: 4614–4622.

    CAS  PubMed  Google Scholar 

  40. Fukuyama K, Matsuzawa K, Hubbard SL, Dirks PB, Murakami M, Rutka JT . Analysis of glial fibrillary acidic protein gene methylation in human malignant gliomas. Anticancer Res 1996; 16: 1251–1257.

    CAS  PubMed  Google Scholar 

  41. Condorelli DF, Nicoletti VG, Barresi V, Caruso A, Conticello S, de Vellis J et al. Tissue-specific DNA methylation patterns of the rat glial fibrillary acidic protein gene. J Neurosci Res 1994; 39: 694–707.

    CAS  PubMed  Google Scholar 

  42. Zeng J, Du J, Lin J, Bak XY, Wu C, Wang S . High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors. Mol Ther 2009; 17: 1585–1593.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mesnil M, Yamasaki H . Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 2000; 60: 3989–3999.

    CAS  PubMed  Google Scholar 

  44. Asklund T, Appelskog IB, Ammerpohl O, Langmoen IA, Dilber MS, Aints A et al. Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSVtk gene. Exp Cell Res 2003; 284: 185–195.

    CAS  PubMed  Google Scholar 

  45. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS . Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 2001; 172: 383–397.

    CAS  PubMed  Google Scholar 

  46. Song J, Lee ST, Kang W, Park JE, Chu K, Lee SE et al. Human embryonic stem cell-derived neural precursor transplants attenuate apomorphine-induced rotational behavior in rats with unilateral quinolinic acid lesions. Neurosci Lett 2007; 423: 58–61.

    CAS  PubMed  Google Scholar 

  47. Glaser T, Pollard SM, Smith A, Brustle O . Tripotential differentiation of adherently expandable neural stem (NS) cells. PLoS One 2007; 2: e298.

    PubMed  PubMed Central  Google Scholar 

  48. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH . IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 2004; 164: 111–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmed AU, Rolle CE, Tyler MA, Han Y, Sengupta S, Wainwright DA et al. Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther 2010; 18: 1846–1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS . Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008; 26: 831–841.

    CAS  PubMed  Google Scholar 

  51. Tyler MA, Ulasov IV, Sonabend AM, Nandi S, Han Y, Marler S et al. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Therapy 2009; 16: 262–278.

    CAS  PubMed  Google Scholar 

  52. Strauss R, Huser A, Ni S, Tuve S, Kiviat N, Sow PS et al. Baculovirus-based vaccination vectors allow for efficient induction of immune responses against plasmodium falciparum circumsporozoite protein. Mol Ther 2007; 15: 193–202.

    CAS  PubMed  Google Scholar 

  53. Chuang CK, Wong TH, Hwang SM, Chang YH, Chen GY, Chiu YC et al. Baculovirus transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. Mol Ther 2009; 17: 889–896.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boulaire J, Balani P, Wang S . Transcriptional targeting to brain cells: Engineering cell type-specific promoter containing cassettes for enhanced transgene expression. Adv Drug Deliv Rev 2009; 61: 589–602.

    CAS  PubMed  Google Scholar 

  55. Reekmans KP, Praet J, De Vocht N, Tambuyzer BR, Bergwerf I, Daans J et al. Clinical potential of intravenous neural stem cell delivery for treatment of neuro-inflammatory disease in mice? Cell Transplant 2010; e-pub ahead of print 19 November 2010, doi:10.3727/096368910X543411.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Institute of Bioengineering and Nanotechnology, Biomedical Research Council, Agency for Science, Technology and Research (A*STAR) in Singapore and a grant from National Medical Research Council in Singapore (NMRC/1203/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

The editor has retracted this article following an investigation by Agency for Science, Technology and Research (A*STAR), Institute of Bioengineering and Nanotechnology, Singapore, which found evidence of fabricated animal survival data presented in Figure 7C in the article to make the results statistically significant. D H Lam, J Yang, J Lin, C K Tham, W H Ng & S Wang agree to this retraction. Y Zhao has agreed to this retraction but not to the wording of this retraction notice.

About this article

Cite this article

Zhao, Y., Lam, D., Yang, J. et al. RETRACTED ARTICLE: Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther 19, 189–200 (2012). https://doi.org/10.1038/gt.2011.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.82

Keywords

This article is cited by

Search

Quick links