Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Non-hematopoietic stem cells as factories for in vivo therapeutic protein production

Abstract

As an alternative to recombinant protein administration, ex vivo gene-modified cells may provide a novel strategy for systemic delivery of therapeutic proteins. This approach has been used in preclinical and clinical studies of a plethora of pathological conditions, including anemia, hemophilia and cancer for the production of erythropoietin, coagulation factors, immunostimulatory cytokines, recombinant antibodies and angiogenesis inhibitors. Cell delivery vehicles may also be varied: autologous or allogeneic, precursor or terminally differentiated cells, with targeting properties or immobilized in immunoprotective devices. This field did not meet the expectation raised initially, mainly because of difficulties with obtaining therapeutic plasma levels and the short lifespan of producer cells that hampered clinical application. Different non-hematopoietic stem/progenitor cells have emerged as potential delivery vehicles, since they are easy to obtain, expand and transduce, and they exhibit prolonged lifespans (with mesenchymal stem cells probably being the most popular cell type, but not the only one). Special emphasis is placed on the different routes used to deliver these cellular vehicles and the controversies about their targeting abilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Seow Y, Wood MJ . Biological gene delivery vehicles: beyond viral vectors. Mol Ther 2009; 17: 767–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bessis N, GarciaCozar FJ, Boissier MC . Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Therapy 2004; 11: S10–S17.

    Article  CAS  PubMed  Google Scholar 

  3. Nayak S, Herzog RW . Progress and prospects: immune responses to viral vectors. Gene Therapy 2010; 17: 295–304.

    Article  CAS  PubMed  Google Scholar 

  4. Harrington K, Alvarez-Vallina L, Crittenden M, Gough M, Chong H, Diaz RM et al. Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery? Hum Gene Ther 2002; 13: 1263–1280.

    Article  CAS  PubMed  Google Scholar 

  5. Roth JC, Curiel DT, Pereboeva L . Cell vehicle targeting strategies. Gene Therapy 2008; 15: 716–729.

    Article  CAS  PubMed  Google Scholar 

  6. Aboody KS, Najbauer J, Danks MK . Stem and progenitor cell-mediated tumor selective gene therapy. Gene Therapy 2008; 15: 739–752.

    Article  CAS  PubMed  Google Scholar 

  7. Bexell D, Scheding S, Bengzon J . Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 2010; 18: 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6: 447–450.

    Article  CAS  PubMed  Google Scholar 

  10. Muller FJ, Snyder EY, Loring JF . Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 2006; 7: 75–84.

    Article  PubMed  Google Scholar 

  11. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy 2004; 11: 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  13. Gunnarsson S, Bexell D, Svensson A, Siesjo P, Darabi A, Bengzon J . Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010; 218: 140–144.

    Article  CAS  PubMed  Google Scholar 

  14. Xu G, Jiang XD, Xu Y, Zhang J, Huang FH, Chen ZZ et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol Int 2009; 33: 466–474.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    Article  CAS  PubMed  Google Scholar 

  16. Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 2008; 68: 9614–9623.

    Article  CAS  PubMed  Google Scholar 

  17. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 2009; 106: 4822–4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS . The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 2002; 62: 5657–5763.

    CAS  PubMed  Google Scholar 

  19. Kim SK, Cargioli TG, Machluf M, Yang W, Sun Y, Al-Hashem R et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 2005; 11: 5965–5970.

    Article  CAS  PubMed  Google Scholar 

  20. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002; 62: 7170–7174.

    CAS  PubMed  Google Scholar 

  21. Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS . Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 2009; 27: 2320–2330.

    Article  CAS  PubMed  Google Scholar 

  22. Hong X, Miller C, Savant-Bhonsale S, Kalkanis SN . Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 2009; 64: 1139–1146.

    Article  PubMed  Google Scholar 

  23. Yuan X, Hu J, Belladonna ML, Black KL, Yu JS . Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 2006; 66: 2630–2638.

    Article  CAS  PubMed  Google Scholar 

  24. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 2009; 17: 183–190.

    Article  CAS  PubMed  Google Scholar 

  25. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003; 108: 863–868.

    Article  PubMed  Google Scholar 

  26. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 2009; 18: 683–692.

    Article  CAS  PubMed  Google Scholar 

  27. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI . The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12–20.

    Article  CAS  PubMed  Google Scholar 

  28. Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK et al. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009; 110: 1189–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009; 27: 1548–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smits PA, Kleppe LS, Witt TA, Mueske CS, Vile RG, Simari RD . Distribution of circulation-derived endothelial progenitors following systemic delivery. Endothelium 2007; 14: 1–5.

    Article  PubMed  Google Scholar 

  32. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  33. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  34. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Therapy 2008; 15: 1446–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S . Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008; 26: 2332–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007; 14: 894–903.

    Article  CAS  PubMed  Google Scholar 

  37. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 2007; 25: 1618–1626.

    Article  CAS  PubMed  Google Scholar 

  38. Elzaouk L, Moelling K, Pavlovic J . Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006; 15: 865–874.

    Article  CAS  PubMed  Google Scholar 

  39. Frank RT, Edmiston M, Kendall SE, Najbauer J, Cheung CW, Kassa T et al. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One 2009; 4: e8314.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 2008; 16: 749–756.

    Article  CAS  PubMed  Google Scholar 

  41. Duan X, Guan H, Cao Y, Kleinerman ES . Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 2009; 115: 13–22.

    Article  CAS  PubMed  Google Scholar 

  42. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010; 70: 3718–3729.

    Article  CAS  PubMed  Google Scholar 

  43. Dudek AZ, Bodempudi V, Welsh BW, Jasinski P, Griffin RJ, Milbauer L et al. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br J Cancer 2007; 97: 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prockop DJ . Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 2009; 17: 939–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D . Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    Article  CAS  PubMed  Google Scholar 

  46. Sanz L, Santos-Valle P, Alonso-Camino V, Salas C, Serrano A, Vicario JL et al. Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 2008; 75: 308–314.

    Article  PubMed  Google Scholar 

  47. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109: 228–234.

    Article  CAS  PubMed  Google Scholar 

  48. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    Article  CAS  PubMed  Google Scholar 

  49. Chuah MK, Van DA, Zwinnen H, Goovaerts I, Vanslembrouck V, Collen D et al. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000; 11: 729–738.

    Article  CAS  PubMed  Google Scholar 

  50. Eliopoulos N, Al-Khaldi A, Crosato M, Lachapelle K, Galipeau J . A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Therapy 2003; 10: 478–489.

    Article  CAS  PubMed  Google Scholar 

  51. Eliopoulos N, Lejeune L, Martineau D, Galipeau J . Human-compatible collagen matrix for prolonged and reversible systemic delivery of erythropoietin in mice from gene-modified marrow stromal cells. Mol Ther 2004; 10: 741–748.

    Article  CAS  PubMed  Google Scholar 

  52. Eliopoulos N, Gagnon RF, Francois M, Galipeau J . Erythropoietin delivery by genetically engineered bone marrow stromal cells for correction of anemia in mice with chronic renal failure. J Am Soc Nephrol 2006; 17: 1576–1584.

    Article  CAS  PubMed  Google Scholar 

  53. Compte M, Cuesta AM, Sanchez-Martin D, Alonso-Camino V, Vicario JL, Sanz L et al. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells 2009; 27: 753–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frank RT, Najbauer J, Aboody KS . Concise review: stem cells as an emerging platform for antibody therapy of cancer. Stem Cells 2010; 28: 2084–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang N, Fallavollita L, Nguyen L, Burnier J, Rafei M, Galipeau J et al. Autologous bone marrow stromal cells genetically engineered to secrete an igf-I receptor decoy prevent the growth of liver metastases. Mol Ther 2009; 17: 1241–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stagg J, Lejeune L, Paquin A, Galipeau J . Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004; 15: 597–608.

    Article  CAS  PubMed  Google Scholar 

  57. Eliopoulos N, Francois M, Boivin MN, Martineau D, Galipeau J . Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 2008; 68: 4810–4818.

    Article  CAS  PubMed  Google Scholar 

  58. Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell'Accio F et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 2006; 24: 896–907.

    Article  PubMed  Google Scholar 

  59. Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP . Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 2002; 99: 457–462.

    Article  CAS  PubMed  Google Scholar 

  60. Matsui H, Shibata M, Brown B, Labelle A, Hegadorn C, Andrews C et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells 2007; 25: 2660–2669.

    Article  CAS  PubMed  Google Scholar 

  61. Coutu DL, Cuerquis J, El AR, Forner KA, Roy R, Francois M et al. Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 2011; 32: 295–305.

    Article  CAS  PubMed  Google Scholar 

  62. Rameshwar P . Casting doubt on the safety of ‘off-the-shelf’ mesenchymal stem cells for cell therapy. Mol Ther 2009; 17: 216–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campeau PM, Rafei M, Francois M, Birman E, Forner KA, Galipeau J . Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol Ther 2009; 17: 369–372.

    Article  CAS  PubMed  Google Scholar 

  64. Chen NK, Tan SY, Udolph G, Kon OL . Insulin expressed from endogenously active glucose-responsive EGR1 promoter in bone marrow mesenchymal stromal cells as diabetes therapy. Gene Therapy 2010; 17: 592–605.

    Article  CAS  PubMed  Google Scholar 

  65. Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L, Nolta JA et al. Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 2008; 26: 1713–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Orive G, Hernandez RM, Gascon AR, Calafiore R, Chang TM, De VP et al. Cell encapsulation: promise and progress. Nat Med 2003; 9: 104–107.

    Article  CAS  PubMed  Google Scholar 

  67. Goren A, Dahan N, Goren E, Baruch L, Machluf M . Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 2010; 24: 22–31.

    Article  PubMed  Google Scholar 

  68. Conrad C, Gupta R, Mohan H, Niess H, Bruns CJ, Kopp R et al. Genetically engineered stem cells for therapeutic gene delivery. Curr Gene Ther 2007; 7: 249–260.

    Article  CAS  PubMed  Google Scholar 

  69. Karp JM, Leng Teo GS . Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 2009; 4: 206–216.

    Article  CAS  PubMed  Google Scholar 

  70. Coutu DL, Yousefi AM, Galipeau J . Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J Cell Biochem 2009; 108: 537–546.

    Article  CAS  PubMed  Google Scholar 

  71. Fritz V, Noel D, Bouquet C, Opolon P, Voide R, Apparailly F et al. Antitumoral activity and osteogenic potential of mesenchymal stem cells expressing the urokinase-type plasminogen antagonist amino-terminal fragment in a murine model of osteolytic tumor. Stem Cells 2008; 26: 2981–2990.

    Article  CAS  PubMed  Google Scholar 

  72. Hu M, Yang JL, Teng H, Jia YQ, Wang R, Zhang XW et al. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. BMC Cancer 2008; 8: 306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kyriakou CA, Yong KL, Benjamin R, Pizzey A, Dogan A, Singh N et al. Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. J Gene Med 2006; 8: 253–264.

    Article  CAS  PubMed  Google Scholar 

  74. Loebinger MR, Eddaoudi A, Davies D, Janes SM . Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69: 4134–4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministerio de Ciencia e Innovación (BIO2008-03233 and PSE-01000-2009-11), the Comunidad de Madrid (S-BIO-0236-2006) and the European Union (SUDOE-FEDER. IMMUNONET-SOE1/P1/E014) to LA-V; and from the Fondo de Investigación Sanitaria/ Instituto de Salud Carlos III (PI08/90856 and PS09/00227) and Fundación Investigación Biomédica Hospital Puerta de Hierro to LS. MC was supported by Instituto de Salud Carlos III (Contrato Rio Hortega, CM06/00055).

AUTHOR CONTRIBUTIONS

LS, MC, IG-M and LA-V wrote the manuscript; LS approved the final draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Sanz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, L., Compte, M., Guijarro-Muñoz, I. et al. Non-hematopoietic stem cells as factories for in vivo therapeutic protein production. Gene Ther 19, 1–7 (2012). https://doi.org/10.1038/gt.2011.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.68

Keywords

This article is cited by

Search

Quick links