Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors

Abstract

Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  Google Scholar 

  2. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    Article  CAS  Google Scholar 

  3. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  Google Scholar 

  4. Thrasher AJ, Gaspar HB, Baum C, Modlich U, Schambach A, Candotti F et al. Gene therapy: X-SCID transgene leukaemogenicity. Nature 2006; 443: E5–E6; discussion E6–E7.

    Article  CAS  Google Scholar 

  5. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  Google Scholar 

  6. Metais JY, Dunbar CE . The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16: 439–449.

    Article  CAS  Google Scholar 

  7. Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z et al. Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 2008; 22: 1519–1528.

    Article  CAS  Google Scholar 

  8. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    Article  CAS  Google Scholar 

  9. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    Article  CAS  Google Scholar 

  10. Maruggi G, Porcellini S, Facchini G, Perna SK, Cattoglio C, Sartori D et al. Transcriptional enhancers induce insertional gene deregulation independently from the vector type and design. Mol Ther 2009; 17: 851–856.

    Article  CAS  Google Scholar 

  11. West AG, Gaszner M, Felsenfeld G . Insulators: many functions, many mechanisms. Genes Dev 2002; 16: 271–288.

    Article  Google Scholar 

  12. Bell AC, West AG, Felsenfeld G . Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science 2001; 291: 447–450.

    Article  CAS  Google Scholar 

  13. Gaussin A, Mermod N . Chromatin insulators and prospective application for gene therapy. Gene Ther Rev 2009; 1.

  14. Kellum R, Schedl P . A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol Cell Biol 1992; 12: 2424–2431.

    Article  CAS  Google Scholar 

  15. Sun FL, Elgin SC . Putting boundaries on silence. Cell 1999; 99: 459–462.

    Article  CAS  Google Scholar 

  16. Fourel G, Magdinier F, Gilson E . Insulator dynamics and the setting of chromatin domains. Bioessays 2004; 26: 523–532.

    Article  CAS  Google Scholar 

  17. Emery DW, Yannaki E, Tubb J, Nishino T, Li Q, Stamatoyannopoulos G . Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo. Blood 2002; 100: 2012–2019.

    Article  CAS  Google Scholar 

  18. Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW . Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther 2002; 5: 589–598.

    Article  CAS  Google Scholar 

  19. Yao S, Osborne CS, Bharadwaj RR, Pasceri P, Sukonnik T, Pannell D et al. Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. Nucleic Acids Res 2003; 31: 5317–5323.

    Article  CAS  Google Scholar 

  20. Aker M, Tubb J, Groth AC, Bukovsky AA, Bell AC, Felsenfeld G et al. Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 2007; 18: 333–343.

    Article  CAS  Google Scholar 

  21. Nishino T, Tubb J, Emery DW . Partial correction of murine beta-thalassemia with a gammaretrovirus vector for human gamma-globin. Blood Cells Mol Dis 2006; 37: 1–7.

    Article  CAS  Google Scholar 

  22. Bell AC, West AG, Felsenfeld G . The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 1999; 98: 387–396.

    Article  CAS  Google Scholar 

  23. Li CL, Xiong D, Stamatoyannopoulos G, Emery DW . Genomic and functional assays demonstrate reduced gammaretroviral vector genotoxicity associated with use of the cHS4 chromatin insulator. Mol Ther 2009; 17: 716–724.

    Article  CAS  Google Scholar 

  24. Urbinati F, Arumugam P, Higashimoto T, Perumbeti A, Mitts K, Xia P et al. Mechanism of reduction in titers from lentivirus vectors carrying large inserts in the 3′LTR. Mol Ther 2009; 17: 1527–1536.

    Article  CAS  Google Scholar 

  25. Modin C, Pedersen FS, Duch M . Lack of shielding of primer binding site silencer-mediated repression of an internal promoter in a retrovirus vector by the putative insulators scs, BEAD-1, and HS4. J Virol 2000; 74: 11697–11707.

    Article  CAS  Google Scholar 

  26. Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P . The 3′ region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 2009; 4: e6995.

    Article  Google Scholar 

  27. Phillips JE, Corces VG . CTCF: master weaver of the genome. Cell 2009; 137: 1194–1211.

    Article  Google Scholar 

  28. Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 2006; 20: 2349–2354.

    Article  CAS  Google Scholar 

  29. Gaszner M, Felsenfeld G . Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006; 7: 703–713.

    Article  CAS  Google Scholar 

  30. Yusufzai TM, Felsenfeld G . The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc Natl Acad Sci USA 2004; 101: 8620–8624.

    Article  CAS  Google Scholar 

  31. Pankiewicz R, Karlen Y, Imhof MO, Mermod N . Reversal of the silencing of tetracycline-controlled genes requires the coordinate action of distinctly acting transcription factors. J Gene Med 2005; 7: 117–132.

    Article  CAS  Google Scholar 

  32. Ferrari S, Simmen KC, Dusserre Y, Muller K, Fourel G, Gilson E et al. Chromatin domain boundaries delimited by a histone-binding protein in yeast. J Biol Chem 2004; 279: 55520–55530.

    Article  CAS  Google Scholar 

  33. Rupp RA, Kruse U, Multhaup G, Gobel U, Beyreuther K, Sippel AE . Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes. Nucleic Acids Res 1990; 18: 2607–2616.

    Article  CAS  Google Scholar 

  34. Kruse U, Qian F, Sippel AE . Identification of a fourth nuclear factor I gene in chicken by cDNA cloning: NFI-X. Nucleic Acids Res 1991; 19: 6641.

    Article  CAS  Google Scholar 

  35. Cohen RB, Sheffery M, Kim CG . Partial purification of a nuclear protein that binds to the CCAAT box of the mouse alpha 1-globin gene. Mol Cell Biol 1986; 6: 821–832.

    Article  CAS  Google Scholar 

  36. Alevizopoulos A, Mermod N . Antagonistic regulation of a proline-rich transcription factor by transforming growth factor beta and tumor necrosis factor alpha. J Biol Chem 1996; 271: 29672–29681.

    Article  CAS  Google Scholar 

  37. Muller K, Mermod N . The histone-interacting domain of nuclear factor I activates simian virus 40 DNA replication in vivo. J Biol Chem 2000; 275: 1645–1650.

    Article  CAS  Google Scholar 

  38. Petrykowska HM, Vockley CM, Elnitski L . Detection and characterization of silencers and enhancer-blockers in the greater CFTR locus. Genome Res 2008; 18: 1238–1246.

    Article  CAS  Google Scholar 

  39. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 2007; 128: 1231–1245.

    Article  CAS  Google Scholar 

  40. Roulet E, Busso S, Camargo AA, Simpson AJ, Mermod N, Bucher P . High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 2002; 20: 831–835.

    Article  CAS  Google Scholar 

  41. Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D et al. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 2007; 4: 747–753.

    Article  CAS  Google Scholar 

  42. Schambach A, Bohne J, Chandra S, Will E, Margison GP, Williams DA et al. Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol Ther 2006; 13: 391–400.

    Article  CAS  Google Scholar 

  43. Esnault G, Majocchi S, Martinet D, Besuchet-Schmutz N, Beckmann JS, Mermod N . Transcription factor CTF1 acts as a chromatin domain boundary that shields human telomeric genes from silencing. Mol Cell Biol 2009; 29: 2409–2418.

    Article  CAS  Google Scholar 

  44. Evans-Galea MV, Wielgosz MM, Hanawa H, Srivastava DK, Nienhuis AW . Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 2007; 15: 801–809.

    Article  CAS  Google Scholar 

  45. Ramezani A, Hawley TS, Hawley RG . Combinatorial incorporation of enhancer-blocking components of the chicken beta-globin 5′HS4 and human T-cell receptor alpha/delta BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells 2008; 26: 3257–3266.

    Article  CAS  Google Scholar 

  46. Chung JH, Bell AC, Felsenfeld G . Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci USA 1997; 94: 575–580.

    Article  CAS  Google Scholar 

  47. D’Apolito D, Baiamonte E, Bagliesi M, Di Marzo R, Calzolari R, Ferro L et al. The sea urchin sns5 insulator protects retroviral vectors from chromosomal position effects by maintaining active chromatin structure. Mol Ther 2009; 17: 1434–1441.

    Article  Google Scholar 

  48. Cassani B, Montini E, Maruggi G, Ambrosi A, Mirolo M, Selleri S et al. Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy. Blood 2009; 114: 3546–3556.

    Article  CAS  Google Scholar 

  49. Chung JH, Whiteley M, Felsenfeld G . A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 1993; 74: 505–514.

    Article  CAS  Google Scholar 

  50. Cohen-Haguenauer O, Restrepo LM, Masset M, Bayer J, Dal Cortivo L, Marolleau JP et al. Efficient transduction of hemopoietic CD34+ progenitors of human origin using an original retroviral vector derived from Fr-MuLV-FB29: in vitro assessment. Hum Gene Ther 1998; 9: 207–216.

    Article  CAS  Google Scholar 

  51. Tarapore P, Richmond C, Zheng G, Cohen SB, Kelder B, Kopchick J et al. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res 1997; 25: 3895–3903.

    Article  CAS  Google Scholar 

  52. Schambach A, Mueller D, Galla M, Verstegen MM, Wagemaker G, Loew R et al. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Therapy 2006; 13: 1524–1533.

    Article  CAS  Google Scholar 

  53. Li Z, Schwieger M, Lange C, Kraunus J, Sun H, van den Akker E et al. Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Exp Hematol 2003; 31: 1206–1214.

    Article  CAS  Google Scholar 

  54. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed with support from EC-DG research (FP6-NoE), CLINIGENE (LSHB-CT-2006-018933 to NM, OCH and CB) and the University of Lausanne (NM). UM and CB also received support from the Food and Drug Administration (project FDA-09-1056211-KP) and the German Ministry of Research and Education (BMBF project iGene, 01GU0813). The kind gift of plasmids by Dr G Felsenfeld is acknowledged. We thankJulien DeRoyer (LBAP, ENSC); Johanna Krause (Department of Experimental Hematology, Hannover); Dr Jérémy Catinot and Pieric Doriot for technical help.

AUTHOR CONTRIBUTION

AG designed and performed experiments on the identification and assay of insulators, analyzed data and wrote the paper with NN under the supervision of NM; C Bauche constructed insulators and insulated hybrid LTRs; CD and AA performed experiments on the implementation of insulators in viral vectors, and analyzed data under the supervision of OCH who initiated the program with NM; and UM and AS performed experiments to assay the cytotoxicity of insulated viral vectors, and analyzed data under the supervision of C Baum.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O Cohen-Haguenauer or N Mermod.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaussin, A., Modlich, U., Bauche, C. et al. CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors. Gene Ther 19, 15–24 (2012). https://doi.org/10.1038/gt.2011.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.70

Keywords

This article is cited by

Search

Quick links