Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Matrix metalloproteinase 14 overexpression reduces corneal scarring

Abstract

Once a corneal scar develops, surgical management remains the only option for visual rehabilitation. Corneal transplantation is the definitive treatment for a corneal scar. In addition to the challenges posed by graft rejections and other postoperative complications, the lack of high-quality donor corneas can limit the benefits possible with keratoplasty. The purpose of our study was to evaluate a new therapeutic strategy for treating corneal scarring by targeting collagen deposition. We overexpressed a fibril collagenase (matrix metalloproteinase 14 (MMP14)) to prevent collagen deposition in the scar tissue. We demonstrated that a single and simple direct injection of recombinant adeno-associated virus-based vector expressing murine MMP14 can modulate gene expression of murine stromal keratocytes. This tool opens new possibilities with regard to treatment. In a mouse model of corneal full-thickness incision, we observed that MMP14 overexpression reduced corneal opacity and expression of the major genes involved in corneal scarring, especially type III collagen and α-smooth muscle actin. These results represent proof of concept that gene transfer of MMP14 can reduce scar formation, which could have therapeutic applications after corneal trauma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. O’Brart DP, Lohmann CP, Klonos G, Corbett MC, Pollock WS, Kerr-Muir MG et al. The effects of topical corticosteroids and plasmin inhibitors on refractive outcome, haze, and visual performance after photorefractive keratectomy. A prospective, randomized, observer-masked study. Ophthalmology 1994; 101: 1565–1574.

    Article  Google Scholar 

  2. Vigo L, Scandola E, Carones F . Scraping and mitomycin C to treat haze and regression after photorefractive keratectomy for myopia. J Refract Surg 2003; 19: 449–454.

    PubMed  Google Scholar 

  3. Muller M, Meltendorf C, Mirshahi A, Kohnen T . Use of multilayer amniotic membrane as first therapy for penetrating corneal ulcers. Klin Monbl Augenheilkd 2009; 226: 640–644.

    Article  CAS  Google Scholar 

  4. Csutak A, Silver DM, Tozser J, Hassan Z, Berta A . Urokinase-type plasminogen activator to prevent haze after photorefractive keratectomy, and pregnancy as a risk factor for haze in rabbits. Invest Ophthalmol Vis Sci 2004; 45: 1329–1333.

    Article  Google Scholar 

  5. Gillies MC, Garrett SK, Shina SM, Morlet N, Taylor HR . Topical interferon alpha 2b for corneal haze after excimer laser photorefractive keratectomy. The Melbourne Excimer Laser Group. J Cataract Refract Surg 1996; 22: 891–900.

    Article  CAS  Google Scholar 

  6. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV . Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr Eye Res 1998; 17: 736–747.

    Article  CAS  Google Scholar 

  7. Sivak JM, Fini ME . MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res 2002; 21: 1–14.

    Article  CAS  Google Scholar 

  8. Fini ME, Cook JR, Mohan R . Proteolytic mechanisms in corneal ulceration and repair. Arch Dermatol Res 1998; 290 (Suppl): S12–S23.

    Article  Google Scholar 

  9. Saika S, Yamanaka O, Sumioka T, Miyamoto T, Miyazaki K, Okada Y et al. Fibrotic disorders in the eye: targets of gene therapy. Prog Retin Eye Res 2008; 27: 177–196.

    Article  CAS  Google Scholar 

  10. Stramer BM, Zieske JD, Jung JC, Austin JS, Fini ME . Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest Ophthalmol Vis Sci 2003; 44: 4237–4246.

    Article  Google Scholar 

  11. Murphy G, Nagase H . Progress in matrix metalloproteinase research. Mol Aspects Med 2008; 29: 290–308.

    Article  CAS  Google Scholar 

  12. Nagase H, Visse R, Murphy G . Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69: 562–573.

    Article  CAS  Google Scholar 

  13. Mohan R, Chintala SK, Jung JC, Villar WV, McCabe F, Russo LA et al. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 2002; 277: 2065–2072.

    Article  CAS  Google Scholar 

  14. Jung JC, Huh MI, Fini ME . Constitutive collagenase-1 synthesis through MAPK pathways is mediated, in part, by endogenous IL-1alpha during fibrotic repair in corneal stroma. J Cell Biochem 2007; 102: 453–462.

    Article  CAS  Google Scholar 

  15. Gordon GM, Ledee DR, Feuer WJ, Fini ME . Cytokines and signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in corneal epithelial cells. J Cell Physiol 2009; 221: 402–411.

    Article  CAS  Google Scholar 

  16. Lin M, Jackson P, Tester AM, Diaconu E, Overall CM, Blalock JE et al. Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol 2008; 173: 144–153.

    Article  CAS  Google Scholar 

  17. Ye HQ, Maeda M, Yu FS, Azar DT . Differential expression of MT1-MMP (MMP-14) and collagenase III (MMP-13) genes in normal and wounded rat corneas. Invest Ophthalmol Vis Sci 2000; 41: 2894–2899.

    CAS  PubMed  Google Scholar 

  18. Li DQ, Shang TY, Kim HS, Solomon A, Lokeshwar BL, Pflugfelder SC . Regulated expression of collagenases MMP-1, -8, and -13 and stromelysins MMP-3, -10, and -11 by human corneal epithelial cells. Invest Ophthalmol Vis Sci 2003; 44: 2928–2936.

    Article  Google Scholar 

  19. Saika S, Yamanaka O, Okada Y, Miyamoto T, Kitano A, Flanders KC et al. Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice. Am J Physiol Cell Physiol 2007; 293: C75–C86.

    Article  CAS  Google Scholar 

  20. Bemelmans AP, Arsenijevic Y, Majo F . Efficient lentiviral gene transfer into corneal stroma cells using a femtosecond laser. Gene Ther 2009; 16: 933–938.

    Article  CAS  Google Scholar 

  21. Holzer MP, Rabsilber TM, Auffarth GU . Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology. Invest Ophthalmol Vis Sci 2006; 47: 2828–2831.

    Article  Google Scholar 

  22. Bitto A, Minutoli L, Galeano MR, Altavilla D, Polito F, Fiumara T et al. Angiopoietin-1 gene transfer improves impaired wound healing in genetically diabetic mice without increasing VEGF expression. Clin Sci (Lond) 2008; 114: 707–718.

    Article  CAS  Google Scholar 

  23. d’Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 1997; 250: 751–757.

    Article  Google Scholar 

  24. Itoh Y, Ito N, Nagase H, Evans RD, Bird SA, Seiki M . Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell 2006; 17: 5390–5399.

    Article  CAS  Google Scholar 

  25. Hinz B . Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127: 526–537.

    Article  CAS  Google Scholar 

  26. Grinnell F, Zhu M, Carlson MA, Abrams JM . Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res 1999; 248: 608–619.

    Article  CAS  Google Scholar 

  27. Azar DT . Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2006; 104: 264–302.

    PubMed  PubMed Central  Google Scholar 

  28. Azar DT, Casanova FH, Mimura T, Jain S, Chang JH . Effect of MT1-MMP deficiency and overexpression in corneal keratocytes on vascular endothelial cell migration and proliferation. Curr Eye Res 2008; 33: 954–962.

    Article  CAS  Google Scholar 

  29. Onguchi T, Han KY, Chang JH, Azar DT . Membrane type-1 matrix metalloproteinase potentiates basic fibroblast growth factor-induced corneal neovascularization. Am J Pathol 2009; 174: 1564–1571.

    Article  CAS  Google Scholar 

  30. Mimura T, Han KY, Onguchi T, Chang JH, Kim TI, Kojima T et al. MT1-MMP-mediated cleavage of decorin in corneal angiogenesis. J Vasc Res 2009; 46: 541–550.

    Article  CAS  Google Scholar 

  31. Ellenberg D, Azar DT, Hallak JA, Tobaigy F, Han KY, Jain S et al. Novel Aspects of corneal angiogenic and lymphangiogenic privilege. Prog Retin Eye Res 2010; 29: 208–248.

    Article  CAS  Google Scholar 

  32. Fantes FE, Hanna KD, Waring III GO, Pouliquen Y, Thompson KP, Savoldelli M . Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol 1990; 108: 665–675.

    Article  CAS  Google Scholar 

  33. Brenes F, Harris S, Paz MO, Petrovic LM, Scheuer PJ . PLP fixation for combined routine histology and immunocytochemistry of liver biopsies. J Clin Pathol 1986; 39: 459–463.

    Article  CAS  Google Scholar 

  34. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  Google Scholar 

  35. Salvetti A, Oreve S, Chadeuf G, Favre D, Cherel Y, Champion-Arnaud P et al. Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 1998; 9: 695–706.

    Article  CAS  Google Scholar 

  36. Stieger K, Colle MA, Dubreil L, Mendes-Madeira A, Weber M, Le Meur G et al. Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain. Mol Ther 2008; 16: 916–923.

    Article  CAS  Google Scholar 

  37. Pearson K . Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia. Philos Trans Royal Soc London A 1896; 187: 253–318.

    Article  Google Scholar 

  38. Pearson K . On lines and planes of closest fit to systems of points in space. Philos Mag 1901; 2: 559–572.

    Article  Google Scholar 

Download references

Acknowledgements

We thank M Allouche and B Couderc for helpful comments and critical reading. This work was supported by the Fondation de l’Avenir (study ET7-474), la Fondation de France (grants ‘Berthe Fouassier’: 2008002176, 2009002318 and 2009002320), the Laboratoires Pierre Fabre and the INSERM. We also thank MA Daussion and J Bernaud from the Centre de Recherche de Chirurgie Expérimentale Claude Bernard (CHU Purpan, Toulouse, France) for animal care and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Fournié.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galiacy, S., Fournié, P., Massoudi, D. et al. Matrix metalloproteinase 14 overexpression reduces corneal scarring. Gene Ther 18, 462–468 (2011). https://doi.org/10.1038/gt.2010.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.159

Keywords

This article is cited by

Search

Quick links