Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Developing therapeutic microRNAs for cancer

Abstract

Despite substantial progress in understanding the cancer-signaling network, effective therapies remain scarce due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity. This complexity of cancer defines an urgent goal for researchers and clinicians to develop novel therapeutic strategies. The discovery of microRNAs (miRNAs) provides new hope for accomplishing this task. Supported by solid evidence for a critical role in cancer and bolstered by a unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a yet large number of oncogenic factors and are, therefore, anticipated to be highly efficacious. After the completion of target validation for several candidates, the development of therapeutic miRNAs is now moving to a new stage that involves pharmacological drug delivery, preclinical toxicology and regulatory guidelines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Abbreviations

ICH:

International Conference on Harmonization

miRNA:

microRNA

RISC:

RNA-induced silencing complex

siRNA:

small interfering RNA.

References

  1. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  2. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  Google Scholar 

  3. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  Google Scholar 

  4. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  Google Scholar 

  5. Check Hayden E . Cancer complexity slows quest for cure. Nature 2008; 455: 148.

    Article  CAS  Google Scholar 

  6. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    Article  CAS  Google Scholar 

  7. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  Google Scholar 

  8. Hutvagner G, Simard MJ, Mello CC, Zamore PD . Sequence-specific inhibition of small RNA function. PLoS Biol 2004; 2: E98.

    Article  Google Scholar 

  9. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    Article  Google Scholar 

  10. Meister G, Landthaler M, Dorsett Y, Tuschl T . Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 2004; 10: 544–550.

    Article  CAS  Google Scholar 

  11. Orom UA, Kauppinen S, Lund AH . LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 2006; 372: 137–141.

    Article  CAS  Google Scholar 

  12. Bader AG, Brown D, Winkler M . The promise of microRNA replacement therapy. Cancer Res 2010; 70: 7027–7030.

    Article  CAS  Google Scholar 

  13. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010; 18: 181–187.

    Article  CAS  Google Scholar 

  14. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70: 5923–5930.

    Article  CAS  Google Scholar 

  15. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109–1123.

    Article  CAS  Google Scholar 

  16. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  Google Scholar 

  17. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    Article  CAS  Google Scholar 

  18. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.

    Article  CAS  Google Scholar 

  19. Petri A, Lindow M, Kauppinen S . MicroRNA silencing in primates: towards development of novel therapeutics. Cancer Res 2009; 69: 393–395.

    Article  CAS  Google Scholar 

  20. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2009; 327: 198–201.

    Article  Google Scholar 

  21. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T . Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110: 563–574.

    Article  CAS  Google Scholar 

  22. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD . Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    Article  CAS  Google Scholar 

  23. Akhtar S, Benter IF . Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 2007; 117: 3623–3632.

    Article  CAS  Google Scholar 

  24. Castanotto D, Rossi JJ . The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009; 457: 426–433.

    Article  CAS  Google Scholar 

  25. Kaasgaard T, Andresen TL . Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 2010; 7: 225–243.

    Article  CAS  Google Scholar 

  26. Whitehead KA, Langer R, Anderson DG . Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009; 8: 129–138.

    Article  CAS  Google Scholar 

  27. Davis ME, Chen ZG, Shin DM . Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7: 771–782.

    Article  CAS  Google Scholar 

  28. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008; 452: 591–597.

    Article  CAS  Google Scholar 

  29. Roth JA . Adenovirus p53 gene therapy. Expert Opin Biol Ther 2006; 6: 55–61.

    Article  CAS  Google Scholar 

  30. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  Google Scholar 

  31. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7: 759–764.

    Article  CAS  Google Scholar 

  32. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2009; 29: 1580–1587.

    Article  Google Scholar 

  33. Kota J, Chivukula RR, O′Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  Google Scholar 

  34. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  Google Scholar 

  35. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    Article  CAS  Google Scholar 

  36. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010; 28: 341–347.

    Article  CAS  Google Scholar 

  37. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2009; 18: 181–187.

    Article  Google Scholar 

  38. Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005; 102: 12177–12182.

    Article  CAS  Google Scholar 

  39. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  Google Scholar 

  40. Chen QR, Yu LR, Tsang P, Wei JS, Song YK, Cheuk A et al. Systematic proteome analysis identifies transcription factor YY1 as a direct target of miR-34a. J Proteome Res 2010; 10: 479–487.

    Article  Google Scholar 

  41. Yamakuchi M, Ferlito M, Lowenstein CJ . miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105: 13421–13426.

    Article  CAS  Google Scholar 

  42. Forsbach A, Nemorin JG, Montino C, Muller C, Samulowitz U, Vicari AP et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 2008; 180: 3729–3738.

    Article  CAS  Google Scholar 

  43. Reichert JM, Wenger JB . Development trends for new cancer therapeutics and vaccines. Drug Discov Today 2008; 13: 30–37.

    Article  CAS  Google Scholar 

  44. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 2009; 4: e6816.

    Article  Google Scholar 

  45. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007; 67: 11111–11116.

    Article  CAS  Google Scholar 

  46. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    Article  CAS  Google Scholar 

  47. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464: 1067–1070.

    Article  CAS  Google Scholar 

  48. Alnylam Pharmaceuticals. Dana-Farber Cancer Institute presentation: RNAi in man - ALN-VSP. 2011, http://www.alnylam.com.

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (AGB: 1R43CA134071 & 1R43CA137939) and a Cancer Prevention and Research Institute of Texas (CPRIT) Commercialization grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Bader.

Ethics declarations

Competing interests

The authors are employees of Mirna Therapeutics, which develops miRNA-based therapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, A., Brown, D., Stoudemire, J. et al. Developing therapeutic microRNAs for cancer. Gene Ther 18, 1121–1126 (2011). https://doi.org/10.1038/gt.2011.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.79

Keywords

This article is cited by

Search

Quick links