Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells

Abstract

We have previously described the oncolytic adenovirus, Ad(CgA-E1A-miR122), herein denoted Ad5(CgA-E1A-miR122) that selectively replicates in and kills neuroendocrine cells, including freshly isolated midgut carcinoid cells from liver metastases. Ad5(CgA-E1A-miR122) is based on human adenovirus serotype 5 (Ad5) and infects target cells by binding to the coxsackie-adenovirus receptor (CAR) and integrins on the cell surface. Some neuroendocrine tumor (NET) and neuroblastoma cells express low levels of CAR and are therefore poorly transduced by Ad5. However, they often express high levels of somatostatin receptors (SSTRs). Therefore, we introduced cyclic peptides, which contain four amino acids (FWKT) and mimic the binding site for SSTRs in the virus fiber knob. We show that FWKT-modified Ad5 binds to SSTR2 on NET cells and transduces midgut carcinoid cells from liver metastases about 3–4 times better than non-modified Ad5. Moreover, FWKT-modified Ad5 overcomes neutralization in an ex vivo human blood loop model to greater extent than Ad5, indicating that fiber knob modification may prolong the systemic circulation time. We conclude that modification of adenovirus with the FWKT motif may be beneficial for NET therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gustafsson BI, Kidd M, Modlin IM . Neuroendocrine tumors of the diffuse neuroendocrine system. Curr Opin Oncol 2008; 20: 1–12.

    Article  PubMed  Google Scholar 

  2. Oberg K, Kvols L, Caplin M, Delle Fave G, de Herder W, Rindi G et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol 2004; 15: 966–973.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar U, Grant M . Somatostatin and somatostatin receptors. Results Probl Cell Differ 2009; 50: 137–184.

    Article  Google Scholar 

  4. Wright RM, Gram H, Vattay A, Byme S, Lake P, Dottavio D et al. Binding epitope of somatostatin defined by phage-displayed peptide libraries. Biotechnology (NY) 1995; 13: 165–169.

    CAS  Google Scholar 

  5. Zou Y, Xiao X, Li Y, Zhou T . Somatostatin analogues inhibit cancer cell proliferation in an SSTR2-dependent manner via both cytostatic and cytotoxic pathways. Oncol Rep 2009; 21: 379–386.

    CAS  PubMed  Google Scholar 

  6. Howman-Giles R, Shaw PJ, Uren RF, Chung DK . Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 2007; 37: 286–302.

    Article  PubMed  Google Scholar 

  7. Pashankar FD, O’orisio MS, Menda Y . MIBG and somatostatin receptor analogs in children: current concepts on diagnostic and therapeutic use. J Nucl Med 2005; 46 (Suppl 1): 55S–61S.

    CAS  PubMed  Google Scholar 

  8. Toth K, Dhar D, Wold WS . Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin Biol Ther 2010; 10: 353–368.

    Article  CAS  PubMed  Google Scholar 

  9. Leja J, Dzojic H, Gustafson E, Oberg K, Giandomenico V, Essand M et al. A novel chromogranin-A promoter-driven oncolytic adenovirus for midgut carcinoid therapy. Clin Cancer Res 2007; 13: 2455–2462.

    Article  CAS  PubMed  Google Scholar 

  10. Leja J, Nilsson B, Yu D, Gustafson E, Akerström G, Oberg K et al. Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability. PLoS One 2010; 5: e8916.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ . Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  12. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT . Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 2001; 61: 813–817.

    CAS  PubMed  Google Scholar 

  13. Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT et al. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 2002; 38: 1917–1926.

    Article  CAS  PubMed  Google Scholar 

  14. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  15. Murakami M, Ugai H, Belousova N, Pereboev A, Dent P, Fisher PB et al. Chimeric adenoviral vectors incorporating a fiber of human adenovirus 3 efficiently mediate gene transfer into prostate cancer cells. Prostate 2009; 70: 362–376.

    Google Scholar 

  16. Wang H, Liaw YC, Stone D, Kalyuzhniy O, Amiraslanov I, Tuve S et al. Identification of CD46 binding sites within the adenovirus serotype 35 fiber knob. J Virol 2007; 81: 12785–12792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Li ZY, Liu Y, Persson J, Beyer I, Möller T et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 2011; 17: 96–104.

    Article  PubMed  Google Scholar 

  18. Lie PP, Cheng CY, Mruk DD . Crosstalk between desmoglein-2/desmocollin-2/Src kinase and coxsackie and adenovirus receptor/ZO-1 protein complexes, regulates blood-testis barrier dynamics. Int J Biochem Cell Biol 2010; 42: 975–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas MA, Lichtenstein DL, Krajcsi P, Wold WS . A real-time PCR method to rapidly titer adenovirus stocks. Methods Mol Med 2007; 130: 185–192.

    CAS  PubMed  Google Scholar 

  20. Zaiss AK, Machado HB, Herschman HR . The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem 2009; 108: 778–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J et al. Impact of human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clin Cancer Res 2004; 10: 7199–7206.

    Article  CAS  PubMed  Google Scholar 

  22. Bangari DS, Mittal SK . Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 2006; 6: 215–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seregin SS, Amalfitano A . Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 2009; 9: 1521–1531.

    Article  CAS  PubMed  Google Scholar 

  24. Danielsson A, Elgue G, Nilsson BM, Nilsson B, Lambris JD, Tötterman TH et al. An ex vivo loop system models the toxicity and efficacy of PEGylated and unmodified adenovirus serotype 5 in whole human blood. Gene Therapy 2010; 17: 752–762.

    Article  CAS  PubMed  Google Scholar 

  25. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Therapy 2001; 8: 730–735.

    Article  CAS  PubMed  Google Scholar 

  27. Lie ALM, Bakker CT, Wesseling JG, Bosma PJ . AdEasy-based cloning system to generate tropism expanded replicating adenoviruses expressing transgenes late in the viral life cycle. Gene Therapy 2005; 12: 1347–1352.

    Article  Google Scholar 

  28. Bradshaw AC, Parker AL, Duffy MR, Coughlan L, van Rooijen N, Kähäri VM et al. Requirements for receptor engagement during infection by adenovirus complexed with blood coagulation factor X. PLoS Pathog 2010; 6: e1001142.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carlisle RC, Di Y, Cerny AM, Sonnen AF, Sim RB, Green NK et al. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood 2009; 113: 1909–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Au T, Thorne S, Korn WM, Sze D, Kirn D, Reid TR . Minimal hepatic toxicity of Onyx-015: spatial restriction of coxsackie-adenoviral receptor in normal liver. Cancer Gene Ther 2007; 14: 139–150.

    Article  CAS  PubMed  Google Scholar 

  32. Gustafsdottir SM, Schallmeiner E, Fredriksson S, Gullberg M, Söderberg O, Jarvius M et al. Proximity ligation assays for sensitive and specific protein analyses. Anal Biochem 2005; 345: 2–9.

    Article  CAS  PubMed  Google Scholar 

  33. Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM et al. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 2010; 7: 401–409.

    Article  CAS  PubMed  Google Scholar 

  34. Gustafsdottir SM, Nordengrahn A, Fredriksson S, Wallgren P, Rivera E, Schallmeiner E et al. Detection of individual microbial pathogens by proximity ligation. Clin Chem 2006; 52: 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  35. Hidaka C, Milano E, Leopold PL, Bergelson JM, Hackett NR, Finberg RW et al. CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J Clin Invest 1999; 103: 579–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999; 73: 5156–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nilsson M, Karlsson S, Fan X . Functionally distinct subpopulations of cord blood CD34+ cells are transduced by adenoviral vectors with serotype 5 or 35 tropism. Mol Ther 2004; 9: 377–388.

    Article  CAS  PubMed  Google Scholar 

  38. Howitt J, Bewley MC, Graziano V, Flanagan JM, Freimuth P . Structural basis for variation in adenovirus affinity for the cellular coxsackievirus and adenovirus receptor. J Biol Chem 2003; 278: 26208–26215.

    Article  CAS  PubMed  Google Scholar 

  39. Reubi JC, Waser B, Cescato R, Gloor B, Stettler C, Christ E et al. Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients. J Clin Endocrinol Metab 2010; 95: 2343–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hua YP, Yin XY, Peng BG, Li SQ, Lai JM, Liang HZ et al. Mechanisms and influence of octreotide-induced regulation of somatostatin receptor 2 on hepatocellular carcinoma. Chemotherapy 2009; 55: 312–320.

    Article  CAS  PubMed  Google Scholar 

  41. Korner M, Eltschinger V, Waser B, Schonbrunn A, Reubi JC . Value of immunohistochemistry for somatostatin receptor subtype sst2A in cancer tissues: lessons from the comparison of anti-sst2A antibodies with somatostatin receptor autoradiography. Am J Surg Pathol 2005; 29: 1642–1651.

    Article  PubMed  Google Scholar 

  42. Sarkioja M, Pesonen S, Raki M, Hakkarainen T, Salo J, Ahonen MT et al. Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies. Gene Therapy 2008; 15: 921–929.

    Article  CAS  PubMed  Google Scholar 

  43. Pesonen S, Nokisalmi P, Escutenaire S, Särkioja M, Raki M, Cerullo V et al. Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2 L-D24 in patients with metastatic and refractory solid tumors. Gene Therapy 2010; 17: 892–904.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng WS, Kraaij R, Nilsson B, van der Weel L, de Ridder CM, Tötterman TH et al. A novel TARP-promoter-based adenovirus against hormone-dependent and hormone-refractory prostate cancer. Mol Ther 2004; 10: 355–364.

    Article  CAS  PubMed  Google Scholar 

  45. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nilsson M, Ljungberg J, Richter J, Kiefer T, Magnusson M, Lieber A et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J Gene Med 2004; 6: 631–641.

    Article  CAS  PubMed  Google Scholar 

  47. Danielsson A, Dzojic H, Nilsson B, Essand M . Increased therapeutic efficacy of the prostate-specific oncolytic adenovirus Ad[I/PPT-E1A] by reduction of the insulator size and introduction of the full-length E3 region. Cancer Gene Ther 2008; 15: 203–213.

    Article  CAS  PubMed  Google Scholar 

  48. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  49. Leu FP, Nandi M, Niu C . The effect of transforming growth factor beta on human neuroendocrine tumor BON cell proliferation and differentiation is mediated through somatostatin signaling. Mol Cancer Res 2008; 6: 1029–1042.

    Article  CAS  PubMed  Google Scholar 

  50. Allalou A, Wahlby C . BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Methods Programs Biomed 2009; 94: 58–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Linda Sandin for experimental help and Professor Ulf Landegren for sharing equipment. The Swedish Cancer Society (contracts 08-0582 and 10-0105), the Swedish Research Council (Grant K2008-68X-15270-04-3), Gunnar Nilsson's Cancer Foundation (Grant E50/08) and the Swedish Children Cancer Foundation (PROJ08/006) supported this work. ME is a recipient of the Swedish Cancer Society Senior Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Essand.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leja, J., Yu, D., Nilsson, B. et al. Oncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells. Gene Ther 18, 1052–1062 (2011). https://doi.org/10.1038/gt.2011.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.54

Keywords

Search

Quick links