Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Large animal models of hematopoietic stem cell gene therapy

Abstract

Large animal models have been instrumental in advancing hematopoietic stem cell (HSC) gene therapy. Here we review the advantages of large animal models, their contributions to the field of HSC gene therapy and recent progress in this field. Several properties of human HSCs including their purification, their cell-cycle characteristics, their response to cytokines and the proliferative demands placed on them after transplantation are more similar in large animal models than in mice. Progress in the development and use of retroviral vectors and ex vivo transduction protocols over the last decade has led to efficient gene transfer in both dogs and nonhuman primates. Importantly, the approaches developed in these models have translated well to the clinic. Large animals continue to be useful to evaluate the efficacy and safety of gene therapy, and dogs with hematopoietic diseases have now been cured by HSC gene therapy. Nonhuman primates allow evaluation of aspects of transplantation as well as disease-specific approaches such as AIDS (acquired immunodeficiency syndrome) gene therapy that can not be modeled well in the dog. Finally, large animal models have been used to evaluate the genotoxicity of viral vectors by comparing integration sites in hematopoietic repopulating cells and monitoring clonality after transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lorenz E, Uphoff D, Reid TR, Shelton E . Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 1951; 12: 197–201.

    CAS  PubMed  Google Scholar 

  2. Dick JE, Magli MC, Huszar D, Phillips RA, Bernstein A . Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 1985; 42: 71–79.

    Article  CAS  PubMed  Google Scholar 

  3. Williams DA, Lemischka IR, Nathan DG, Mulligan RC . Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 1984; 310: 476–480.

    Article  CAS  PubMed  Google Scholar 

  4. Keller G, Paige C, Gilboa E, Wagner EF . Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 1985; 318: 149–154.

    Article  CAS  PubMed  Google Scholar 

  5. Stead RB, Kwok WW, Storb R, Miller AD . Canine model for gene therapy: inefficient gene expression in dogs reconstituted with autologous marrow infected with retroviral vectors. Blood 1988; 71: 742–747.

    CAS  PubMed  Google Scholar 

  6. Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 1993; 342: 1134–1137.

    Article  CAS  PubMed  Google Scholar 

  7. Orlic D, Girard LJ, Jordan CT, Anderson SM, Cline AP, Bodine DM . The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci USA 1996; 93: 11097–11102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheshier SH, Morrison SJ, Liao X, Weissman IL . In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. PNAS 1999; 96: 3120–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shepherd BE, Kiem H-P, Lansdorp PM, Dunbar CE, Aubert G, Larochelle A et al. Hematopoietic stem-cell behavior in nonhuman primates. Blood 2007; 110: 1806–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abkowitz JL, Catlin SN, Guttorp P . Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med 1996; 2: 190–197.

    Article  CAS  PubMed  Google Scholar 

  11. Abkowitz JL, Persik MT, Shelton GH, Ott RL, Kiklevich JV, Catlin SN et al. Behavior of hematopoietic stem cells in a large animal. PNAS 1995; 92: 2031–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guttorp P, Newton MA, Abkowitz JL . A stochastic model for haematopoiesis in cats. IMA J Math Appl Med Biol 1990; 7: 125–143.

    Article  CAS  PubMed  Google Scholar 

  13. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection [erratum appears in Mol Cell Biol January 1992;12(1):433] Mol Cell Biol 1990; 10: 4239–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  15. Trobridge G, Russell DW . Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors. J Virol 2004; 78: 2327–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273: 242–245.

    Article  CAS  PubMed  Google Scholar 

  17. Hahn WC, Weinberg RA . Rules for making human tumor cells [erratum appears in N Engl J Med. 13 February 2003;348(7):674.] (Review) N Engl J Med 2002; 347: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  18. Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 1996; 87: 956–967.

    CAS  PubMed  Google Scholar 

  19. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor [gamma] chain(null) mice. Blood 2005; 106: 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horn PA, Thomasson BM, Wood BL, Andrews RG, Morris JC, Kiem H-P . Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Blood 2003; 102: 4329–4335.

    Article  CAS  PubMed  Google Scholar 

  21. Mezquita P, Beard B, Kiem H-P . NOD/SCID repopulating cells contribute only to short-term repopulation in the baboon. Gene Therapy 2008; 15: 1460–1462.

    Article  CAS  PubMed  Google Scholar 

  22. Ladiges WC, Storb R, Thomas ED . Canine models of bone marrow transplantation. Lab Anim Sci 1990; 40: 11–15.

    CAS  PubMed  Google Scholar 

  23. Drew E, Merkens H, Chelliah S, Doyonnas R, McNagny KM . CD34 is a specific marker of mature murine mast cells. Exp Hematol 2002; 30: 1211.

    Article  CAS  PubMed  Google Scholar 

  24. Okuno Y, Iwasaki H, Huettner CS, Radomska HS, Gonzalez DA, Tenen DG et al. Differential regulation of the human and murine CD34 genes in hematopoietic stem cells. PNAS 2002; 99: 6246–6251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suter SE, Gouthro TA, McSweeney PA, Nash RA, Haskins ME, Felsburg PJ et al. Isolation and characterization of pediatric canine bone marrow CD34+ cells. Vet Immunol Immunopathol 2004; 101: 31–47.

    Article  CAS  PubMed  Google Scholar 

  26. Wagner JL, Burnett RC, Storb R . Organization of the canine major histocompatibility complex: current perspectives. J Hered 1999; 90: 35–38.

    Article  CAS  PubMed  Google Scholar 

  27. Venkataraman GM, Stroup P, Graves SS, Storb R . An improved method for dog leukocyte antigen 88 typing and two new major histocompatibility complex class I alleles, DLA-88*01101 and DLA-88*01201. Tissue Antigens 2007; 70: 53–57.

    Article  CAS  PubMed  Google Scholar 

  28. Kiem H-P, McSweeney PA, Bruno B, Goerner M, Buron G, Morris J et al. Improved gene transfer into canine hematopoietic repopulating cells using CD34-enriched marrow cells in combination with a gibbon ape leukemia virus–pseudotype retroviral vector. Gene Therapy 1999; 6: 966–972.

    Article  CAS  PubMed  Google Scholar 

  29. Goerner M, Bruno B, McSweeney PA, Buron G, Storb R, Kiem H-P . The use of granulocyte colony-stimulating factor during retroviral transduction on fibronectin fragment CH-296 enhances gene transfer into hematopoietic repopulating cells in dogs. Blood 1999; 94: 2287–2292.

    CAS  PubMed  Google Scholar 

  30. Goerner M, Horn PA, Peterson L, Kurre P, Storb R, Rasko JEJ et al. Sustained multilineage gene persistence and expression in dogs transplanted with CD34+ marrow cells transduced by RD114-pseudotype oncoretrovirus vectors. Blood 2001; 98: 2065–2070.

    Article  CAS  PubMed  Google Scholar 

  31. Horn PA, Keyser KA, Peterson LJ, Neff T, Thomasson BM, Thompson J et al. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol. Blood 2004; 103: 3710–3716.

    Article  CAS  PubMed  Google Scholar 

  32. Kiem H-P, Darovsky B, von Kalle C, Goehle S, Graham T, Miller AD et al. Long-term persistence of canine hematopoietic cells genetically marked by retrovirus vectors. Hum Gene Ther 1996; 7: 89–96.

    Article  CAS  PubMed  Google Scholar 

  33. Kiem H-P, Allen J, Trobridge G, Olson E, Keyser K, Peterson L et al. Foamy virus-mediated gene transfer to canine repopulating cells. Blood 2007; 109: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harrison DE . Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 1980; 55: 77–81.

    CAS  PubMed  Google Scholar 

  35. Kiem H-P, Heyward S, Winkler A, Potter J, Allen JM, Miller AD et al. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 1997; 90: 4638–4645.

    CAS  PubMed  Google Scholar 

  36. Thomasson B, Peterson L, Thompson J, Goerner M, Kiem H-P . Direct comparison of steady-state marrow, primed marrow, and mobilized peripheral blood for transduction of hematopoietic stem cells in dogs. Hum Gene Ther 2003; 14: 1683–1686.

    Article  CAS  PubMed  Google Scholar 

  37. Donahue RE, Sorrentino BP, Hawley RG, An DS, Chen IS, Wersto RP . Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in nonhuman primate CD34+ cells. Mol Ther 2001; 3: 359–367.

    Article  CAS  PubMed  Google Scholar 

  38. Dao MA, Hashino K, Kato I, Nolta JA . Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 1998; 92: 4612–4621.

    CAS  PubMed  Google Scholar 

  39. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA . Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 1996; 2: 876–882.

    Article  CAS  PubMed  Google Scholar 

  40. Burroughs L, Mielcarek M, Little M-T, Bridger G, MacFarland R, Fricker S et al. Durable engraftment of AMD3100-mobilized autologous and allogeneic peripheral blood mononuclear cells in a canine transplantation model. Blood 2005; 106: 4002–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beard BC, Kiem HP . Canine models of gene-modified hematopoiesis. Methods Mol Biol 2009; 23: 341–361.

    Article  CAS  Google Scholar 

  42. Peters SO, Kittler ELW, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996; 87: 30–37.

    CAS  PubMed  Google Scholar 

  43. Tisdale JF, Hanazono Y, Sellers SE, Agricola BA, Metzger ME, Donahue RE et al. Ex vivo expansion of genetically marked Rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 1998; 92: 1131–1141.

    CAS  PubMed  Google Scholar 

  44. Trobridge GD, Allen JM, Peterson L, Ironside CG, Russell DW, Kiem H-P . Foamy and lentiviral vectors transduce canine long-term repopulating cells at similar efficiency. Hum Gene Ther 2009; 20: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beard BC, Sud R, Keyser KA, Ironside C, Neff T, Gerull S et al. Long-term polyclonal and multilineage engraftment of methylguanine methyltransferase P140K gene-modified dog hematopoietic cells in primary and secondary recipients. Blood 2009; 113: 5094–5103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weiden PL, Storb R, Graham TC, Schroeder ML . Severe hereditary haemolytic anaemia in dogs treated by marrow transplantation. Br J Haematol 1976; 33: 357–362.

    Article  CAS  PubMed  Google Scholar 

  47. Weiden PL, Hackman RC, Deeg HJ, Graham TC, Thomas ED, Storb R . Long-term survival and reversal of iron overload after marrow transplantation in dogs with congenital hemolytic anemia. Blood 1981; 57: 66–70.

    CAS  PubMed  Google Scholar 

  48. Felsburg PJ, Somberg RL, Hartnett BJ, Suter SF, Henthorn PS, Moore PF et al. Full immunologic reconstitution following nonconditioned bone marrow transplantation for canine X-linked severe combined immunodeficiency. Blood 1997; 90: 3214–3221.

    CAS  PubMed  Google Scholar 

  49. Creevy KE, Bauer Jr TR, Tuschong LM, Embree LJ, Silverstone AM, Bacher JD et al. Mixed chimeric hematopoietic stem cell transplant reverses the disease phenotype in canine leukocyte adhesion deficiency. Vet Immunol Immunopathol 2003; 95: 113–121.

    Article  CAS  PubMed  Google Scholar 

  50. Breider MA, Shull RM, Constantopoulos G . Long-term effects of bone marrow transplantation in dogs with mucopolysaccharidosis I. Am J Pathol 1989; 134: 677–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bauer Jr TR, Hai M, Tuschong LM, Burkholder TH, Gu YC, Sokolic RA et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006; 108: 3313–3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ting-De Ravin SS, Kennedy DR, Naumann N, Kennedy JS, Choi U, Hartnett BJ et al. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood 2006; 107: 3091–3097.

    Article  PubMed  CAS  Google Scholar 

  53. Bauer G, Selander D, Engel B, Carbonaro D, Csik S, Rawlings S et al. Gene therapy for pediatric AIDS (Review). Ann NY Acad Sci 2000; 918: 318–329.

    Article  CAS  PubMed  Google Scholar 

  54. Joag SV . Primate models of AIDS (Review). Microbes Infect 2000; 2: 223–229.

    Article  CAS  PubMed  Google Scholar 

  55. van Bekkum DW . The rhesus monkey as a preclinical model for bone marrow transplantation. Transplant Proc 1978; 10: 105–111.

    CAS  PubMed  Google Scholar 

  56. Andrews RG, Bryant EM, Bartelmez SH, Muirhead DY, Knitter GH, Bensinger W et al. CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood 1992; 80: 1693–1701.

    CAS  PubMed  Google Scholar 

  57. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD et al. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 1988; 81: 951–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Beusechem VW, Valerio D . Gene transfer into hematopoietic stem cells of nonhuman primates. [Review]. Hum Gene Ther 1996; 7: 1649–1668.

    Article  CAS  PubMed  Google Scholar 

  59. Kiem H-P, Andrews RG, Morris J, Peterson L, Heyward S, Allen JM et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 1998; 92: 1878–1886.

    CAS  PubMed  Google Scholar 

  60. Horn PA, Topp MS, Morris JC, Riddell SR, Kiem H-P . Highly efficient gene transfer into baboon marrow repopulating cells using GALV-pseudotype oncoretroviral vectors produced by human packaging cells. Blood 2002; 100: 3960–3967.

    Article  CAS  PubMed  Google Scholar 

  61. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J . The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427: 848–853.

    Article  CAS  PubMed  Google Scholar 

  62. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 1999; 96: 2988–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zielske SP, Gerson SL . Cytokines, including stem cell factor alone, enhance lentiviral transduction in nondividing human LTCIC and NOD/SCID repopulating cells. Mol Ther 2003; 7: 325–333.

    Article  CAS  PubMed  Google Scholar 

  64. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 1992; 11: 3053–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68: 510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Stremlau M, Perron M, Welikala S, Sodroski J . Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 2005; 79: 3139–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. An DS, Kung SK, Bonifacino A, Wersto RP, Metzger ME, Agricola BA et al. Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J Virol 2001; 75: 3547–3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. An DS, Wersto RP, Agricola BA, Metzger ME, Lu S, Amado RG et al. Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34(+) cells. J Virol 2000; 74: 1286–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, Donahue RE et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 2004; 103: 4062–4069.

    Article  CAS  PubMed  Google Scholar 

  70. Kim YJ, Kim YS, Larochelle A, Renaud G, Wolfsberg TG, Adler R et al. Sustained high-level polyclonal hematopoietic marking and transgene expression 4 years after autologous transplantation of rhesus macaques with SIV lentiviral vector-transduced CD34+ cells. Blood 2009; 113: 5434–5443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Agy MB, Frumkin LR, Corey L, Coombs RW, Wolinsky SM, Koehler J et al. Infection of Macaca nemestrina by human immunodeficiency virus type-1. Science 1992; 257: 103–106.

    Article  CAS  PubMed  Google Scholar 

  72. Trobridge GD, Beard BC, Gooch C, Wohlfahrt M, Olsen P, Fletcher J et al. Efficient transduction of pigtailed macaque hemtopoietic repopulating cells with HIV-based lentiviral vectors. Blood 2008; 111: 5537–5543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brennan G, Kozyrev Y, Kodama T, Hu S-L . Novel TRIM5 isoforms expressed by Macaca nemestrina. J Virol 2007; 81: 12210–12217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uchida N, Washington KN, Hayakawa J, Hsieh MM, Bonifacino AC, Krouse AE et al. Development of a human immunodeficiency virus type 1-based lentiviral vector that allows efficient transduction of both human and rhesus blood cells. J Virol 2009; 83: 9854–9862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cold shower for AIDS vaccines (Editorial). Nat Med 2007; 13: 1389–1390.

  76. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360: 692–698.

    Article  PubMed  Google Scholar 

  77. Amado RG, Mitsuyasu RT, Rosenblatt JD, Ngok FK, Bakker A, Cole S et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther 2004; 15: 251–262.

    Article  CAS  PubMed  Google Scholar 

  78. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009; 15: 285–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Egelhofer M, Brandenburg G, Martinius H, Schult-Dietrich P, Melikyan G, Kunert R et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004; 78: 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hildinger M, Dittmar MT, Schult-Dietrich P, Fehse B, Schnierle BS, Thaler S et al. Membrane-anchored peptide inhibits human immunodeficiency virus entry. J Virol 2001; 75: 3038–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 2003; 8: 196–206.

    Article  CAS  PubMed  Google Scholar 

  82. Korth MJ, Taylor MD, Katze MG . Interferon inhibits the replication of HIV-1, SIV, and SHIV chimeric viruses by distinct mechanisms. Virology 1998; 247: 265–273.

    Article  CAS  PubMed  Google Scholar 

  83. Hu SL . Non-human primate models for AIDS vaccine research (Review). Curr Drug Targets Infect Disord 2005; 5: 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hatziioannou T, Ambrose Z, Chung NP, Piatak Jr M, Yuan F, Trubey CM et al. A macaque model of HIV-1 infection. PNAS 2009; 106: 4425–4429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. PNAS 2007; 104: 13110–13115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trobridge GD, Wu RA, Beard BC, Chiu SY, Muñoz NM, von Laer D et al. Protection of Stem Cell-Derived Lymphocytes in a Primate AIDS Gene Therapy Model after In Vivo Selection. PLoS One 2009; 4: e7693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lucas ML, Seidel NE, Porada CD, Quigley JG, Anderson SM, Malech HL et al. Improved transduction of human sheep repopulating cells by retrovirus vectors pseudotyped with feline leukemia virus type C or RD114 envelopes. Blood 2005; 106: 51–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Josephson NC, Sabo KM, Abkowitz JL . Transduction of feline hematopoietic cells by oncoretroviral vectors pseudotyped with the subgroup A feline leukemia virus (FeLV-A). Mol Ther 2000; 2: 56–62.

    Article  CAS  PubMed  Google Scholar 

  89. Persons DA, Allay ER, Sabatino DE, Kelly P, Bodine DM, Nienhuis AW . Functional requirements for phenotypic correction of murine beta-thalassemia: implications for human gene therapy. Blood 2001; 97: 3275–3282.

    Article  CAS  PubMed  Google Scholar 

  90. Trobridge G, Beard BC, Kiem H-P . Hematopoietic stem cell transduction and amplification in large animal models. Hum Gene Ther 2005; 16: 1355–1366.

    Article  CAS  PubMed  Google Scholar 

  91. Crone TM, Goodtzova K, Edara S, Pegg AE . Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res 1994; 54: 6221–6227.

    CAS  PubMed  Google Scholar 

  92. Neff T, Beard BC, Peterson LJ, Anandakumar P, Thompson J, Kiem H-P . Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood 2005; 105: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  93. Larochelle A, Choi U, Shou Y, Naumann N, Loktionova NA, Clevenger JR et al. In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene. J Clin Invest 2009; 119: 1952–1963.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hacein-Bey-Abina S, von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 [erratum appears in Science. 24 October 2003;302(5645):568] Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  95. Kiem H-P, Sellers S, Thomasson B, Morris JC, Tisdale JF, Horn PA et al. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004; 9: 389–395.

    Article  CAS  PubMed  Google Scholar 

  96. Seggewiss R, Pittaluga S, Adler RL, Guenaga FJ, Ferguson C, Pilz IH et al. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 2006; 107: 3865–3867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Beard BC, Keyser KA, Trobridge GD, Peterson LJ, Miller DG, Jacobs M et al. Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, and foamy virus. Hum Gene Ther 2007; 18: 423–434.

    Article  CAS  PubMed  Google Scholar 

  98. Hematti P, Hong BK, Ferguson C, Adler R, Hanawa H, Sellers S et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004; 2: e423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Beard BC, Dickerson D, Beebe K, Gooch C, Fletcher J, Okbinoglu T et al. Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther 2007; 15: 1356–1365.

    Article  CAS  PubMed  Google Scholar 

  100. Calmels B, Ferguson C, Laukkanen MO, Adler R, Faulhaber M, Hyeoung-Joon K et al. Recurrent retroviral vector integration at the Mds1-Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005; 106: 2530–2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu J, Renaud G, Gomes TJ, Ferris A, Hendrie PC, Donahue RE et al. Reduced genotoxicity of avian sarcoma leukosis virus vectors in rhesus long-term repopulating cells compared to standard murine retrovirus vectors [erratum appears in Mol Ther. October 2008;16(10):1770] Mol Ther 2008; 16: 1617–1623.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant numbers DK077806, HL53750, AI061839, AI063959 and DK56465 from the National Institutes of Health, Bethesda, MD. H-PK is a Markey Molecular Medicine Investigator and the José Carreras/E Donnall Thomas Endowed Chair for Cancer Research. We also acknowledge the assistance of Bonnie Larson, Helen Crawford and Christina Ironside in preparing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-P Kiem.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trobridge, G., Kiem, HP. Large animal models of hematopoietic stem cell gene therapy. Gene Ther 17, 939–948 (2010). https://doi.org/10.1038/gt.2010.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.47

Keywords

This article is cited by

Search

Quick links