Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV-mediated knockdown of Peripherin-2 in vivo using miRNA-based hairpins

Abstract

Gene therapy for inherited retinal degeneration in which expression of a mutant allele has a gain-of-function effect on photoreceptor cells is likely to depend on efficient silencing of the mutated allele. Peripherin-2 (Prph2, also known as peripherin/RDS) is an abundantly expressed photoreceptor-specific gene. In humans, gain-of-function mutations in PRPH2 result in both autosomal dominant retinitis pigmentosa and dominant maculopathies. Gene-silencing strategies for these conditions include RNA interference by short hairpin RNAs (shRNAs). Recent evidence suggests that microRNA (miRNA)-based hairpins may offer a safer and more effective alternative. In this study, we used for the first time a virally transferred miRNA-based hairpin to silence Prph2 in the murine retina. The results show that an miRNA-based shRNA can efficiently and specifically silence Prph2 in vivo as early as 3 weeks after AAV2/8-mediated subretinal delivery, leading to a nearly 50% reduction of photoreceptor cells after 5 weeks. We conclude that miRNA-based hairpins can achieve rapid and robust gene silencing after efficient vector-mediated delivery to the retina. The rationale of using an miRNA-based template to improve the silencing efficiency of a hairpin may prove valuable for allele-specific silencing in which the choice for an RNAi target is limited and offers an alternative therapeutic strategy for the treatment of dominant retinopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bessant DA, Ali RR, Bhattacharya SS . Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 2001; 11: 307–316.

    Article  CAS  Google Scholar 

  2. Daiger SP, Bowne SJ, Sullivan LS . Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 2007; 125: 151–158.

    Article  CAS  Google Scholar 

  3. Farrar GJ, Kenna PF, Humphries P . On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 2002; 21: 857–864.

    Article  CAS  Google Scholar 

  4. Hartong DT, Berson EL, Dryja TP . Retinitis pigmentosa. Lancet 2006; 368: 1795–1809.

    Article  CAS  Google Scholar 

  5. Smith AJ, Bainbridge JW, Ali RR . Prospects for retinal gene replacement therapy. Trends Genet 2009; 25: 156–165.

    Article  CAS  Google Scholar 

  6. Travis GH, Sutcliffe JG, Bok D . The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron 1991; 6: 61–70.

    Article  CAS  Google Scholar 

  7. Boon CJ, den Hollander AI, Hoyng CB, Cremers FP, Klevering BJ, Keunen JE . The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 2008; 27: 213–235.

    Article  CAS  Google Scholar 

  8. Hamel CP . Cone rod dystrophies. Orphanet J Rare Dis 2007; 2: 7.

    Article  Google Scholar 

  9. Musarella MA . Molecular genetics of macular degeneration. Doc Ophthalmol 2001; 102: 165–177.

    Article  CAS  Google Scholar 

  10. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 2001; 17: 42–51.

    Article  CAS  Google Scholar 

  11. Sullivan LS, Bowne SJ, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Lewis RA et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci 2006; 47: 3052–3064.

    Article  Google Scholar 

  12. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  Google Scholar 

  13. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  Google Scholar 

  14. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  Google Scholar 

  15. Bantounas I, Glover CP, Kelly S, Iseki S, Phylactou LA, Uney JB . Assessing adenoviral hammerhead ribozyme and small hairpin RNA cassettes in neurons: inhibition of endogenous caspase-3 activity and protection from apoptotic cell death. J Neurosci Res 2005; 79: 661–669.

    Article  CAS  Google Scholar 

  16. Drenser KA, Timmers AM, Hauswirth WW, Lewin AS . Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 1998; 39: 681–689.

    CAS  PubMed  Google Scholar 

  17. Gorbatyuk M, Justilien V, Liu J, Hauswirth WW, Lewin AS . Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res 2007; 84: 44–52.

    Article  CAS  Google Scholar 

  18. Lavail MM, Yasumura D, Matthes MT, Drenser KA, Flannery JG, Lewin AS et al. Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci USA 2000; 97: 11488–11493.

    Article  CAS  Google Scholar 

  19. Lewin AS, Drenser KA, Hauswirth WW, Nishikawa S, Yasumura D, Flannery JG et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 1998; 4: 967–971.

    Article  CAS  Google Scholar 

  20. Tessitore A, Parisi F, Denti MA, Allocca M, Di Vicino U, Domenici L et al. Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol Ther 2006; 14: 692–699.

    Article  CAS  Google Scholar 

  21. Gorbatyuk M, Justilien V, Liu J, Hauswirth WW, Lewin AS . Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery. Vision Res 2007; 47: 1202–1208.

    Article  CAS  Google Scholar 

  22. O'Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 2007; 81: 127–135.

    Article  CAS  Google Scholar 

  23. O'Reilly M, Millington-Ward S, Palfi A, Chadderton N, Cronin T, McNally N et al. A transgenic mouse model for gene therapy of rhodopsin-linked retinitis pigmentosa. Vision Res 2008; 48: 386–391.

    Article  CAS  Google Scholar 

  24. Palfi A, Ader M, Kiang AS, Millington-Ward S, Clark G, O'Reilly M et al. RNAi-based suppression and replacement of rds-peripherin in retinal organotypic culture. Hum Mutat 2006; 27: 260–268.

    Article  CAS  Google Scholar 

  25. Tam LC, Kiang AS, Kennan A, Kenna PF, Chadderton N, Ader M et al. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum Mol Genet 2008; 17: 2084–2100.

    Article  CAS  Google Scholar 

  26. Chadderton N, Millington-Ward S, Palfi A, O'Reilly M, Tuohy G, Humphries MM et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther 2009; 17: 593–599.

    Article  CAS  Google Scholar 

  27. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    Article  CAS  Google Scholar 

  28. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  Google Scholar 

  29. Kim VN . MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 2004; 14: 156–159.

    Article  CAS  Google Scholar 

  30. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 2008; 105: 5868–5873.

    Article  CAS  Google Scholar 

  31. Shan Z, Lin Q, Deng C, Li X, Huang W, Tan H et al. An efficient method to enhance gene silencing by using precursor microRNA designed small hairpin RNAs. Mol Biol Rep 2008; 36: 1483–1489.

    Article  Google Scholar 

  32. Boudreau RL, Martins I, Davidson BL . Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2009; 17: 169–175.

    Article  CAS  Google Scholar 

  33. Cashman SM, Binkley EA, Kumar-Singh R . Towards mutation-independent silencing of genes involved in retinal degeneration by RNA interference. Gene Therapy 2005; 12: 1223–1228.

    Article  CAS  Google Scholar 

  34. Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B . Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 2004; 32: 1154–1158.

    Article  CAS  Google Scholar 

  35. Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310.

    Article  CAS  Google Scholar 

  36. Paskowitz DM, Greenberg KP, Yasumura D, Grimm D, Yang H, Duncan JL et al. Rapid and stable knockdown of an endogenous gene in retinal pigment epithelium. Hum Gene Ther 2007; 18: 871–880.

    Article  CAS  Google Scholar 

  37. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10: 816–820.

    Article  CAS  Google Scholar 

  38. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  Google Scholar 

  39. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  Google Scholar 

  40. Tschernutter M, Schlichtenbrede FC, Howe S, Balaggan KS, Munro PM, Bainbridge JW et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy 2005; 12: 694–701.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Peter MG Munro for electron microscopy. This project was supported by the European Union (Integrated Project EVI-GENORET: LSHG-CT-2005-512036), Medical Research Council and the National Institute for Health Research Biomedical Centre for Ophthalmology. JWBB is a Wellcome Trust Advanced Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Ali.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiadis, A., Tschernutter, M., Bainbridge, J. et al. AAV-mediated knockdown of Peripherin-2 in vivo using miRNA-based hairpins. Gene Ther 17, 486–493 (2010). https://doi.org/10.1038/gt.2009.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.162

Keywords

This article is cited by

Search

Quick links