Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient delivery of DNA vaccines using human papillomavirus pseudovirions

Abstract

We have examined non-replicative human papillomavirus (HPV) pseudovirions as an approach in the delivery of naked DNA vaccines without safety concerns associated with live viral vectors. In this study, we have generated HPV-16 pseudovirions encapsidating a DNA vaccine encoding the model antigen, ovalbumin (OVA) (HPV16-OVA pseudovirions). Vaccination with HPV16-OVA pseudovirions subcutaneously elicited significantly stronger OVA-specific CD8+ T-cell immune responses compared with OVA DNA vaccination via gene gun in a dose-dependent manner. We showed that a single amino acid mutation in the L2 minor capsid protein that eliminates the infectivity of HPV16-OVA pseudovirion significantly decreased the antigen-specific CD8+ T-cell responses in vaccinated mice. Furthermore, a subset of CD11c+ cells and B220+ cells in draining lymph nodes became labeled on vaccination with fluorescein isothiocyanate-labeled HPV16-OVA pseudovirions in injected mice. HPV pseudovirions were found to infect bone marrow-derived dendritic cells (BMDCs) in vitro. We also showed that pretreatment of HPV16-GFP pseudovirions with furin leads to enhanced HPV16-OVA pseudovirion infection of BMDCs and OVA antigen presentation. Our data suggest that DNA vaccines delivered using HPV pseudovirions represent an efficient delivery system that can potentially affect the field of DNA vaccine delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. zur Hausen H . Infections causing human cancer. JAMA 2008; 299: 837–838.

    Article  Google Scholar 

  2. Roden R, Wu TC . Preventative and therapeutic vaccines for cervical cancer. Expert Rev Vaccines 2003; 2: 495–516.

    Article  CAS  PubMed  Google Scholar 

  3. Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E et al. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 2009; 15: 361–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donnelly JJ, Wahren B, Liu MA . DNA vaccines: progress and challenges. J Immunol 2005; 175: 633–639.

    Article  CAS  PubMed  Google Scholar 

  5. Buck CB, Pastrana DV, Lowy DR, Schiller JT . Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol Med 2005; 119: 445–462.

    CAS  PubMed  Google Scholar 

  6. Campos SK, Ozbun MA . Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS ONE 2009; 4: e4463.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gambhira R, Jagu S, Karanam B, Day PM, Roden R . Role of L2 cysteines in papillomavirus infection and neutralization. Virol J 2009; 6: 176.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L et al. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003; 21: 4036–4042.

    Article  CAS  PubMed  Google Scholar 

  9. Gurunathan S, Klinman DM, Seder RA . DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 2000; 18: 927–974.

    Article  CAS  PubMed  Google Scholar 

  10. Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM . The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 2009; 106: 20458–20463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Day PM, Gambhira R, Roden RB, Lowy DR, Schiller JT . Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol 2008; 82: 4638–4646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Day PM, Lowy DR, Schiller JT . Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 2008; 82: 12565–12568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Day PM, Schiller JT . The role of furin in papillomavirus infection. Future Microbiol 2009; 4: 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  14. Malboeuf CM, Simon DA, Lee YE, Lankes HA, Dewhurst S, Frelinger JG et al. Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine 2007; 25: 3270–3276.

    Article  CAS  PubMed  Google Scholar 

  15. El Mehdaoui S, Touze A, Laurent S, Sizaret PY, Rasschaert D, Coursaget P . Gene transfer using recombinant rabbit hemorrhagic disease virus capsids with genetically modified DNA encapsidation capacity by addition of packaging sequences from the L1 or L2 protein of human papillomavirus type 16. J Virol 2000; 74: 10332–10340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Fayad R, Wang X, Quinn D, Qiao L . Human immunodeficiency virus type 1 gag-specific mucosal immunity after oral immunization with papillomavirus pseudoviruses encoding gag. J Virol 2004; 78: 10249–10257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bousarghin L, Combita-Rojas AL, Touze A, El Mehdaoui S, Sizaret PY, Bravo MM et al. Detection of neutralizing antibodies against human papillomaviruses (HPV) by inhibition of gene transfer mediated by HPV pseudovirions. J Clin Microbiol 2002; 40: 926–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P . Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett 2001; 204: 183–188.

    Article  CAS  PubMed  Google Scholar 

  19. Buck CB, Pastrana DV, Lowy DR, Schiller JT . Efficient intracellular assembly of papillomaviral vectors. J Virol 2004; 78: 751–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chuang CM, Monie A, Wu A, Pai SI, Hung CF . Combination of viral oncolysis and tumor-specific immunity to control established tumors. Clin Cancer Res 2009; 15: 4581–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen Z, Reznikoff G, Dranoff G, Rock KL . Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 1997; 158: 2723–2730.

    CAS  PubMed  Google Scholar 

  22. Kim TW, Hung CF, Boyd DA, He L, Lin CT, Kaiserman D et al. Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res 2004; 64: 400–405.

    Article  CAS  PubMed  Google Scholar 

  23. Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM et al. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 2003; 112: 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hung C-F, Cheng W-F, Hsu K-F, Chai C-Y, He L, Ling M et al. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res 2001; 61: 3698–3703.

    CAS  PubMed  Google Scholar 

  25. Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF et al. Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther 2005; 16: 584–593.

    Article  CAS  PubMed  Google Scholar 

  26. Peng S, Hung C-F, Trimble C, He L, Yeatermeyer J, Boyd D et al. Development of a DNA vaccine targeting HPV-16 oncogenic protein E6. J Virol 2004; 78: 8468–8476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pastrana DV, Buck CB, Pang YY, Thompson CD, Castle PE, FitzGerald PC et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 2004; 321: 205–216.

    Article  CAS  PubMed  Google Scholar 

  28. Jagu S, Karanam B, Gambhira R, Chivukula SV, Chaganti RJ, Lowy DR et al. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J Natl Cancer Inst 2009; 101: 782–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim TW, Hung CF, Zheng M, Boyd DA, He L, Pai SI et al. A DNA vaccine co-expressing antigen and an anti-apoptotic molecule further enhances the antigen-specific CD8+ T-cell immune response. J Biomed Sci 2004; 11: 493–499.

    CAS  PubMed  Google Scholar 

  30. Lin K-Y, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August T, Pardoll DM et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Balasubramanyam Karanam and Subhashini Jagu for their assistance in the preparation of the pseudovirions. This work was supported by 1 RO1 CA114425 01 (Wu), 1 RO1 CA118790 (Roden) and SPORE programs (P50 CA098252 and P50 CA96784-06) of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T-C Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Monie, A., Kang, T. et al. Efficient delivery of DNA vaccines using human papillomavirus pseudovirions. Gene Ther 17, 1453–1464 (2010). https://doi.org/10.1038/gt.2010.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.106

Keywords

This article is cited by

Search

Quick links