Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo

Abstract

Highly active antiretroviral therapy has greatly reduced the morbidity and mortality from human immunodeficiency virus (HIV) infection, but AIDS continues to be a serious health problem worldwide. Despite enormous efforts to develop a vaccine, there is still no cure, and alternative approaches including gene therapy should be explored. In this study we developed and compared combinatorial foamy virus (FV) anti-HIV vectors that also express a mutant methylguanine methyltransferase (MGMTP140K) transgene to increase the percentage of gene-modified cells after transplantation. These FV vectors inhibit replication of HIV-1 and also the simian immunodeficiency virus/HIV-1 (SHIV) chimera that can be used in monkey AIDS gene therapy studies. We identified a combinatorial FV vector that expresses 3 anti-HIV transgenes and inhibits viral replication by over 4 logs in a viral challenge assay. This FV anti-HIV vector expresses an HIV fusion inhibitor and two short hairpin RNAs (shRNAs) targeted to HIV-1 tat and rev, and can be produced at high titer (3.8 × 107 transducing units ml−1) using improved helper plasmids suitable for clinical use. Using a competitive repopulation assay, we show that human CD34+ cells transduced with this combinatorial FV vector efficiently engraft in a mouse xenotransplantation model, and that the percentage of transduced repopulating cells can be increased after transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yeni PG, Hammer SM, Carpenter CC, Cooper DA, Fischl MA, Gatell JM et al. Antiretroviral treatment for adult HIV infection in 2002: updated recommendations of the International AIDS Society-USA Panel [published erratum appears in JAMA 2003; 11: 32]. JAMA 2002; 288: 222–235.

    Article  CAS  PubMed  Google Scholar 

  2. Carr A . Toxicity of antiretroviral therapy and implications for drug development (review). Nat Rev Drug Discov 2003; 2: 624–634.

    Article  CAS  PubMed  Google Scholar 

  3. Klausner RD, Fauci AS, Corey L, Nabel GJ, Gayle H, Berkley S et al. Medicine. The need for a global HIV vaccine enterprise. Science 2003; 300: 2036–2039.

    Article  CAS  PubMed  Google Scholar 

  4. Sekaly RP . The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med 2008; 205: 7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cold shower for AIDS vaccines (Editorial). Nat Med 2007; 13: 1389–1390.

  6. Rossi JJ, June CH, Kohn DB . Genetic therapies against HIV (Review). Nat Biotechnol 2007; 25: 1444–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Lunzen J, Glaunsinger T, Stahmer I, von BV, Baum C, Schilz A et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol Ther 2007; 15: 1024–1033.

    Article  CAS  PubMed  Google Scholar 

  8. Bauer G, Selander D, Engel B, Carbonaro D, Csik S, Rawlings S et al. Gene therapy for pediatric AIDS (Review). Ann NY Acad Sci 2000; 918: 318–329.

    Article  CAS  PubMed  Google Scholar 

  9. Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 1999; 94: 368–371.

    CAS  PubMed  Google Scholar 

  10. Amado RG, Mitsuyasu RT, Rosenblatt JD, Ngok FK, Bakker A, Cole S et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther 2004; 15: 251–262.

    Article  CAS  PubMed  Google Scholar 

  11. Humeau LM, Binder GK, Lu X, Slepushkin V, Merling R, Echeagaray P et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 2004; 9: 902–913.

    Article  CAS  PubMed  Google Scholar 

  12. Bahner I, Sumiyoshi T, Kagoda M, Swartout R, Peterson D, Pepper K et al. Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther 2007; 15: 76–85.

    Article  CAS  PubMed  Google Scholar 

  13. Mautino MR, Morgan RA . Potent inhibition of human immunodeficiency virus type 1 replication by conditionally replicating human immunodeficiency virus-based lentiviral vectors expressing envelope antisense mRNA. Hum Gene Ther 2000; 11: 2025–2037.

    Article  CAS  PubMed  Google Scholar 

  14. Falcone V, Schweizer M, Neumann-Haefelin D . Replication of primate foamy viruses in natural and experimental hosts (Review). Curr Top Microbiol Immunol 2003; 277: 161–180.

    CAS  PubMed  Google Scholar 

  15. Hooks JJ, Gibbs Jr CJ . The foamy viruses (Review). Bacteriol Rev 1975; 39: 169–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flugel RM . Spumaviruses: a group of complex retroviruses (Review). J Acquir Immune Defic Syndr 1991; 4: 739–750.

    CAS  PubMed  Google Scholar 

  17. Trobridge G, Vassilopoulos G, Josephson N, Russell DW . Gene transfer with foamy virus vectors. Methods Enzymol 2002; 346: 628–648.

    Article  CAS  PubMed  Google Scholar 

  18. Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW . Improved foamy virus vectors with minimal viral sequences. Mole Ther 2002; 6: 321–328.

    Article  CAS  Google Scholar 

  19. Vassilopoulos G, Trobridge G, Josephson NC, Russell DW . Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 2001; 98: 604–609.

    Article  CAS  PubMed  Google Scholar 

  20. Josephson NC, Trobridge G, Russell DW . Transduction of long-term and mobilized peripheral blood-derived NOD/SCID repopulating cells by foamy virus vectors. Hum Gene Ther 2004; 15: 87–92.

    Article  CAS  PubMed  Google Scholar 

  21. Josephson NC, Vassilopoulos G, Trobridge GD, Priestly GV, Wood BL, Papayannopoulou T et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci USA 2002; 99: 8295–8300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiem H-P, Allen J, Trobridge G, Olson E, Keyser K, Peterson L et al. Foamy virus-mediated gene transfer to canine repopulating cells. Blood 2007; 109: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem H-P, Kaul R et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci 2006; 103: 1498–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trobridge G, Beard BC, Kiem H-P . Hematopoietic stem cell transduction and amplification in large animal models. Hum Gene Ther 2005; 16: 1355–1366.

    Article  CAS  PubMed  Google Scholar 

  25. Crone TM, Goodtzova K, Edara S, Pegg AE . Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res 1994; 54: 6221–6227.

    CAS  PubMed  Google Scholar 

  26. Xu-Welliver M, Kanugula S, Pegg AE . Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res 1998; 58: 1936–1945.

    CAS  PubMed  Google Scholar 

  27. Zielske SP, Reese JS, Lingas KT, Donze JR, Gerson SL . In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J Clin Invest 2003; 112: 1561–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neff T, Horn PA, Peterson LJ, Thomasson BM, Thompson J, Williams DA et al. Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J Clin Invest 2003; 112: 1581–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neff T, Beard BC, Peterson LJ, Anandakumar P, Thompson J, Kiem H-P . Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood 2005; 105: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  30. Joag SV, Li Z, Foresman L, Stephens EB, Zhao LJ, Adany I et al. Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J Virol 1996; 70: 3189–3197.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Therapy 2006; 13: 641–645.

    Article  CAS  PubMed  Google Scholar 

  32. Trobridge GD, Beard BC, Gooch C, Wohlfahrt M, Olsen P, Fletcher J et al. Efficient transduction of pigtailed macaque hemtopoietic repopulating cells with HIV-based lentiviral vectors. Blood 2008; 111: 5537–5543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keller A, Partin KM, Lochelt M, Bannert H, Flugel RM, Cullen BR . Characterization of the transcriptional transactivator of human foamy retrovirus. J Virol 1991; 65: 2589–2594.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lochelt M, Zentgraf H, Flugel RM . Construction of an infectious DNA clone of the full-length human spumaretrovirus genome and mutagenesis of the bel 1 gene. Virology 1991; 184: 43–54.

    Article  CAS  PubMed  Google Scholar 

  35. Boden D, Pusch O, Lee F, Tucker L, Ramratnam B . Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003; 77: 11531–11535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mole Ther 2003; 8: 196–206.

    Article  CAS  Google Scholar 

  37. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20: 500–505.

    Article  CAS  PubMed  Google Scholar 

  38. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–725.

    Article  CAS  PubMed  Google Scholar 

  39. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–377.

    Article  CAS  PubMed  Google Scholar 

  40. An DS, Qin FX, Auyeung VC, Mao SH, Kung SK, Baltimore D et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mole Ther 2006; 14: 494–504.

    Article  CAS  Google Scholar 

  41. Egelhofer M, Brandenburg G, Martinius H, Schult-Dietrich P, Melikyan G, Kunert R et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004; 78: 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hermann FG, Martinius H, Egelhofer M, Giroglou T, Tonn T, Roth SD et al. Protein scaffold and expression level determine antiviral activity of membrane-anchored antiviral peptides. Hum Gene Ther 2009; 20: 325–336.

    Article  CAS  PubMed  Google Scholar 

  43. Ngoi SM, Chien AC, Lee CG . Exploiting internal ribosome entry sites in gene therapy vector design (Review). Curr Gene Ther 2004; 4: 15–31.

    Article  CAS  PubMed  Google Scholar 

  44. Kimpton C, Walton A, Gill P . A further tetranucleotide repeat polymorphism in the vWF gene. Hum Mol Genet 1992; 1: 287.

    Article  CAS  PubMed  Google Scholar 

  45. Chackerian B, Long EM, Luciw PA, Overbaugh J . Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. J Virol 1997; 71: 3932–3939.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tuschl T . Expanding small RNA interference. Nat Biotechnol 2002; 20: 446–448.

    Article  CAS  PubMed  Google Scholar 

  47. ter Brake O, t Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B . Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008; 16: 557–564.

    Article  PubMed  Google Scholar 

  48. Aagaard L, Zhang J, von Eije KJ, Li H, Saetrom P, Amarzguioui M et al. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Therapy 2008; 15: 1566.

    Article  CAS  Google Scholar 

  49. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  PubMed  Google Scholar 

  50. Flugel RM, Rethwilm A, Maurer B, Darai G . Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes [published erratum appears in EMBO J 1990;9:3806]. EMBO J 1987; 6: 2077–2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bukovsky AA, Song JP, Naldini L . Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 1999; 73: 7087–7092.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Taylor JA, Vojtech L, Bahner I, Kohn DB, Laer DV, Russell DW et al. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther 2008; 16: 46–51.

    Article  CAS  PubMed  Google Scholar 

  53. Park J, Nadeau P, Zucali JR, Johnson CM, Mergia A . Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs. Virology 2005; 343: 275–282.

    Article  CAS  PubMed  Google Scholar 

  54. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci 2007; 104: 13110–13115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schambach A, Schiedlmeier B, Kuhlcke K, Verstegen M, Margison GP, Li Z et al. Towards hematopoietic stem cell-mediated protection against infection with human immunodeficiency virus. Gene Therapy 2006; 13: 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  56. Mezquita P, Beard B, Kiem H-P . NOD/SCID repopulating cells contribute only to short-term repopulation in the baboon. Gene Therapy 2008; 15: 1460–1462.

    Article  CAS  PubMed  Google Scholar 

  57. Levy JA . The value of primate models for studying human immunodeficiency virus pathogenesis. 1996; 25: 163–174.

  58. Nathanson N, Hirsch VM, Mathieson BJ . The role of nonhuman primates in the development of an AIDS vaccine (Review). AIDS 1999; 13 (Suppl A): S113–S120.

    PubMed  Google Scholar 

  59. Warren J . Preclinical AIDS vaccine research: survey of SIV, SHIV, and HIV challenge studies in vaccinated nonhuman primates. J Med Primatol 2002; 31: 237–256.

    Article  PubMed  Google Scholar 

  60. Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J et al. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76: 3774–3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salter RD, Howell DN, Cresswell P . Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 1985; 21: 235–246.

    Article  CAS  PubMed  Google Scholar 

  62. Trkola A, Matthews J, Gordon C, Ketas T, Moore JP . A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor. J Virol 1999; 73: 8966–8974.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 1995; 92: 7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Collman R, Balliet JW, Gregory SA, Friedman H, Kolson DL, Nathanson N et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J Virol 1992; 66: 7517–7521.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants AI063959, AI061839, DK077806, DK56465 and AI42552 from the National Institutes of Health, Bethesda, MD, USA. HPK is a Markey Molecular Medicine Investigator. We thank Tulin Okbinoglu, David Dickerson, Christina Ironside and John Ngo for technical assistance and Martin Wohlfahrt for advice and assistance with the detection of siRNA expression. We also acknowledge the assistance of Bonnie Larson and Helen Crawford in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H-P Kiem or G D Trobridge.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiem, HP., Wu, R., Sun, G. et al. Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Ther 17, 37–49 (2010). https://doi.org/10.1038/gt.2009.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.118

Keywords

This article is cited by

Search

Quick links