Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation

Abstract

X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91phox. Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a γ-retroviral vector for gp91phox expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  2. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  3. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    Article  CAS  PubMed  Google Scholar 

  4. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  5. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  6. Baum C . What are the consequences of the fourth case? Mol Ther 2007; 15: 1401–1402.

    Article  CAS  PubMed  Google Scholar 

  7. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nienhuis AW, Dunbar CE, Sorrentino BP . Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 2006; 13: 1031–1049.

    Article  CAS  PubMed  Google Scholar 

  10. Shou Y, Ma Z, Lu T, Sorrentino BP . Unique risk factors for insertional mutagenesis in a mouse model of XSCID gene therapy. Proc Natl Acad Sci USA 2006; 103: 11730–11735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kustikova O, Fehse B, Modlich U, Yang M, Dullmann J, Kamino K et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005; 308: 1171–1174.

    Article  CAS  PubMed  Google Scholar 

  12. Kustikova OS, Geiger H, Li Z, Brugman MH, Chambers SM, Shaw CA et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark ‘stemness’ pathways. Blood 2007; 109: 1897–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calmels B, Ferguson C, Laukkanen MO, Adler R, Faulhaber M, Kim HJ et al. Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005; 106: 2530–2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aiuti A, Cassani B, Andolfi G, Mirolo M, Biasco L, Recchia A et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117: 2233–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deichmann A, Hacein-Bey-Abina S, Schmidt M, Garrigue A, Brugman MH, Hu J et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007; 117: 2225–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, Glimm H et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seggewiss R, Pittaluga S, Adler RL, Guenaga FJ, Ferguson C, Pilz IH et al. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 2006; 107: 3865–3867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bushman FD . Retroviral integration and human gene therapy. J Clin Invest 2007; 117: 2083–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein S, Siler U, Ott MG, Seger R, Grez M . Gene therapy for chronic granulomatous disease. Curr Opin Mol Ther 2006; 8: 415–422.

    CAS  PubMed  Google Scholar 

  20. Mardiney 3rd M, Malech HL . Enhanced engraftment of hematopoietic progenitor cells in mice treated with granulocyte colony-stimulating factor before low-dose irradiation: Implications for gene therapy. Blood 1996; 87: 4049–4056.

    CAS  PubMed  Google Scholar 

  21. Bjorgvinsdottir H, Ding C, Pech N, Gifford MA, Li LL, Dinauer MC . Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 1997; 89: 41–48.

    CAS  PubMed  Google Scholar 

  22. Goebel WS, Pech NK, Dinauer MC . Stable long-term gene correction with low-dose radiation conditioning in murine X-linked chronic granulomatous disease. Blood Cells Mol Dis 2004; 33: 365–371.

    Article  CAS  PubMed  Google Scholar 

  23. Barese C, Pech N, Dirscherl S, Meyers JL, Sinn AL, Yoder MC et al. Granulocyte colony-stimulating factor prior to nonmyeloablative irradiation decreases murine host hematopoietic stem cell function and increases engraftment of donor marrow cells. Stem Cells 2007; 25: 1578–1585.

    Article  CAS  PubMed  Google Scholar 

  24. Goebel WS, Pech NK, Meyers JL, Srour EF, Yoder MC, Dinauer MC . A murine model of antimetabolite-based, submyeloablative conditioning for bone marrow transplantation: biologic insights and potential applications. Exp Hematol 2004; 32: 1255–1264.

    Article  CAS  PubMed  Google Scholar 

  25. Goebel WS, Yoder MC, Pech NK, Dinauer MC . Donor chimerism and stem cell function in a murine congenic transplantation model after low-dose radiation conditioning: effects of a retroviral-mediated gene transfer protocol and implications for gene therapy. Exp Hematol 2002; 30: 1324–1332.

    Article  CAS  PubMed  Google Scholar 

  26. Sadat MA, Pech N, Saulnier S, Leroy BA, Hossle JP, Grez M et al. Long-term high-level reconstitution of NADPH oxidase activity in murine X-linked chronic granulomatous disease using a bicistronic vector expressing gp91phox and a Delta LNGFR cell surface marker. Hum Gene Ther 2003; 14: 651–666.

    Article  CAS  PubMed  Google Scholar 

  27. Kang E, Giri N, Wu T, Sellers S, Kirby M, Hanazono Y et al. In vivo persistence of retrovirally transduced murine long-term repopulating cells is not limited by expression of foreign gene products in the fully or minimally myeloablated setting. Hum Gene Ther 2001; 12: 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  28. Dinauer MC, Li LL, Bjorgvinsdottir H, Ding C, Pech N . Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood 1999; 94: 914–922.

    CAS  PubMed  Google Scholar 

  29. Jones RJ, Wagner JE, Celano P, Zicha MS, Sharkis SJ . Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 1990; 347: 188–189.

    Article  CAS  PubMed  Google Scholar 

  30. Robbins PB, Skelton DC, Yu XJ, Halene S, Leonard EH, Kohn DB . Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc Natl Acad Sci USA 1998; 95: 10182–10187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt M, Hoffmann G, Wissler M, Lemke N, Mussig A, Glimm H et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther 2001; 12: 743–749.

    Article  CAS  PubMed  Google Scholar 

  32. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    CAS  PubMed  Google Scholar 

  33. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  34. Wang GP, Garrigue A, Ciuffi A, Ronen K, Leipzig J, Berry C et al. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res 2008; 36: e49.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG . RTCGD: Retroviral tagged cancer gene database. Nucleic Acids Res 2004; 32: D523–D527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007; 110: 1770–1778.

    Article  CAS  PubMed  Google Scholar 

  38. Lemischka IMK, Stoeckert C . SCDb: Stem Cell database. 〈http://stemcell.mssm.edu/v2/〉 2002. accessed October 2008.

  39. Jordan CT, Lemischka IR . Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev 1990; 4: 220–232.

    Article  CAS  PubMed  Google Scholar 

  40. Drize NJ, Keller JR, Chertkov JL . Local clonal analysis of the hematopoietic system shows that multiple small short-living clones maintain life-long hematopoiesis in reconstituted mice. Blood 1996; 88: 2927–2938.

    CAS  PubMed  Google Scholar 

  41. Drize NJ, Olshanskaya YV, Gerasimova LP, Manakova TE, Samoylina NL, Todria TV et al. Lifelong hematopoiesis in both reconstituted and sublethally irradiated mice is provided by multiple sequentially recruited stem cells. Exp Hematol 2001; 29: 786–794.

    Article  CAS  PubMed  Google Scholar 

  42. Wyss BK, Meyers JL, Sinn AL, Cai S, Pollok KE, Goebel WS . A novel competitive repopulation strategy to quantitate engraftment of ex vivo manipulated murine marrow cells in submyeloablated hosts. Exp Hematol 2008; 36: 513–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weissman IL, Shizuru JA . The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112: 3543–3553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005; 105: 4235–4246.

    Article  CAS  PubMed  Google Scholar 

  45. Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z et al. Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 2008; 22: 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  46. Will E, Bailey J, Schuesler T, Modlich U, Balcik B, Burzynski B et al. Importance of murine study design for testing toxicity of retroviral vectors in support of phase I trials. Mol Ther 2007; 15: 782–791.

    Article  CAS  PubMed  Google Scholar 

  47. Du Y, Jenkins NA, Copeland NG . Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 2005; 106: 3932–3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Metais JY, Dunbar CE . The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16: 439–449.

    Article  CAS  PubMed  Google Scholar 

  50. Peters B, Dirscherl S, Dantzer J, Nowacki J, Cross S, Li X et al. Automated analysis of viral integration sites in gene therapy research using the SeqMap web resource. Gene Therapy 2008; 15: 1294–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kent WJ . BLAT--the BLAST-like alignment tool. Genome Res 2002; 12: 656–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Robert Getty for assistance with LM-PCR and Shari Upchurch, Maureena Lewis, Melody Warman, and Catherine Matthews for help with preparing the article. This work was supported by National Institutes of Health Grants P01 HL53586 (MCD, MY, KC), K22 LM009135 (SM), K08 HL075253 (SG), RO1 HG004359 (XL), T32 CA111198 Cancer Biology Training Program (s.d.), T32 HL007910 Basic Science Studies on Gene Therapy of Blood Disease (TH) and the Riley Children's Foundation (MCD, MY, WSG). MAS, SD, LS and MCD designed, performed and analyzed experiments and helped draft the paper and figures; JD and TH analyzed data and prepared figures; NP, SG and SC performed and analyzed experiments; YZ and XL analyzed data, CB helped with experimental design and developed a critical procedure; AO and CA helped with analysis of leukemic tissue; WSG and MCY helped with interpretation of data and paper preparation; MG provided critical reagents and helped with data interpretation and preparation of the paper; KC and SM helped design, analyze and interpret the experiments and preparation of the paper; MCD oversaw this entire project including experimental design, analysis, interpretation of the data and preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Dinauer.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadat, M., Dirscherl, S., Sastry, L. et al. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation. Gene Ther 16, 1452–1464 (2009). https://doi.org/10.1038/gt.2009.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.96

Keywords

This article is cited by

Search

Quick links