Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vitro and in vivo analysis of expression cassettes designed for vascular gene transfer

Abstract

Increasing the level and duration of transgene expression and restricting expression to vascular cells are important goals for clinically useful gene therapy vectors. We evaluated several promoters, enhancers and introns in endothelial, smooth muscle and liver cells in tissue culture and in vivo, comparing local delivery to the carotid artery with intravenous delivery to the liver. A 1800-bp fragment of the oxidized LDL receptor (LOX-1) promoter showed highest in vivo activity in the carotid artery, achieving 39% the activity of the reference cytomegalovirus promoter, with 188-fold greater specificity for carotid artery over liver. An enhancer from the Tie2 gene in combination with the intracellular adhesion molecule-2 promoter improved endothelial specificity of plasmid vectors, increased the expression from adenoviral vectors in cultured endothelial cells and doubled the specificity for carotid artery over liver in vivo. Adding a short intron to expression cassettes increased expression in both endothelial and smooth muscle cells in vitro; however, the eNOS enhancer failed to consistently increase the expression or endothelial specificity of the vector. In conclusion, elements from the LOX-1 promoter and Tie2 enhancer together with an intron can be used to improve vectors for vascular gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Landmesser U, Hornig B, Drexler H . Endothelial function—a critical determinant in atherosclerosis? Circulation 2004; 109: 27–33.

    Article  Google Scholar 

  2. White SJ, Newby AC . Gene therapy for all aspects of vein-graft disease. J Card Surg 2002; 17: 549–555.

    Article  Google Scholar 

  3. Brewster LP, Brey EM, Greisler HP . Cardiovascular gene delivery: the good road is awaiting. Adv Drug Deliv Rev 2006; 58: 604–629.

    Article  CAS  Google Scholar 

  4. Jazwa A, Jozkowicz A, Dulak J . New vectors and strategies for cardiovascular gene therapy. Curr Gene Ther 2007; 7: 7–23.

    Article  CAS  Google Scholar 

  5. Higuchi Y, Hirayama A, Shimizu M, Sakakibara T, Kodama K . Postoperative changes in angiographically normal saphenous vein coronary bypass grafts using intravascular ultrasound. Heart Vessels 2002; 17: 57–60.

    Article  Google Scholar 

  6. Kimura T, Kaburagi S, Tamura T, Yokoi H, Nakagawa Y, Yokoi H et al. Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy. Circulation 1997; 96: 475–483.

    Article  CAS  Google Scholar 

  7. De Geest B, Van Linthout S, Lox M, Collen D, Holvoet P . Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer. Hum Gene Ther 2000; 11: 101–112.

    Article  CAS  Google Scholar 

  8. Morishita K, Johnson DE, Williams LT . A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem 1995; 270: 27948–27953.

    Article  CAS  Google Scholar 

  9. Cowan PJ, Shinkel TA, Witwort EJ, Barlow H, Pearse MJ, D'Apice AJF . Targeting gene expression to endothelial cells in transgenic mice using the human intercellular adhesion molecule 2 promoter. Transplantation 1996; 62: 155–160.

    Article  CAS  Google Scholar 

  10. Hegen A, Koidl S, Weindel K, Marme D, Augustin HG, Fiedler U . Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler Thromb Vasc Biol 2004; 24: 1803–1809.

    Article  CAS  Google Scholar 

  11. Karantzoulis-Fegaras F, Antoniou H, Lai SLM, Kulkarni G, D'Abreo C, Wong GKT et al. Characterization of the human endothelial nitric-oxide synthase promoter. J Biol Chem 1999; 274: 3076–3093.

    Article  CAS  Google Scholar 

  12. Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T . Functional analysis of the human vascular adhesion molecule 1 promoter. J Exp Med 1992; 176: 1583–1593.

    Article  CAS  Google Scholar 

  13. Jahroudi N, Lynch DC . Endothelial-cell-specific regulation of von Willebrand factor gene expression. Mol Cell Biol 1994; 14: 999–1008.

    Article  CAS  Google Scholar 

  14. Korhonen J, Lahtinen I, Halmekyto M, Alhonen L, Janne J, Dumont D et al. Endothelial-specific gene expression directed by the tie gene promoter in vivo. Blood 1995; 86: 1828–1835.

    CAS  PubMed  Google Scholar 

  15. Patterson C, Perrella MA, Hsieh C-M, Yoshizumi M, Lee M-E, Haber E . Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem 1995; 270: 23111–23118.

    Article  CAS  Google Scholar 

  16. Minami T, Kuivenhoven JA, Evans V, Kodama T, Rosenberg RD, Aird WC . Ets motifs are necessary for endothelial cell-specific expression of a 723-bp Tie-2 promoter/enhancer in Hprt targeted transgenic mice. Arterioscler Thromb Vasc Biol 2003; 23: 2041–2047.

    Article  CAS  Google Scholar 

  17. Aoyama T, Sawamura T, Furutani Y, Matsuoka R, Yoshida MC, Fujiwara H et al. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J 1999; 339: 177–184.

    Article  CAS  Google Scholar 

  18. Yamanaka S, Zhang XY, Miura K, Kim S, Iwao H . The human gene encoding the lectin-type oxidized LDL receptor (OLR1) is a novel member of the natural killer gene complex with a unique expression profile. Genomics 1998; 54: 191–199.

    Article  CAS  Google Scholar 

  19. Hou JZ, Baichwal V, Cao ZD . Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular-adhesion molecule-1. Proc Natl Acad Sci USA 1994; 91: 11641–11645.

    Article  CAS  Google Scholar 

  20. Tessitore A, Pastore L, Rispoli A, Cilenti L, Toniato E, Flati V et al. Two gamma-interferon-activation sites (GAS) on the promoter of the human intercellular adhesion molecule (ICAM-1) gene are required for induction of transcription by IFN-gamma. Eur J Biochem 1998; 258: 968–975.

    Article  CAS  Google Scholar 

  21. Laumonnier Y, Nadaud S, Agrapart M, Soubrier F . Characterization of an upstream enhancer region in the promoter of the human endothelial nitric-oxide synthase gene. J Biol Chem 2000; 275: 40732–40741.

    Article  CAS  Google Scholar 

  22. Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U et al. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 1997; 94: 3058–3063.

    Article  CAS  Google Scholar 

  23. Antoniou M, Geraghty F, Hurst J, Grosveld F . Efficient 3′-end formation of human beta-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction. Nucl Acids Res 1998; 26: 721–729.

    Article  CAS  Google Scholar 

  24. Nicklin SA, Reynolds PN, Brosnan MJ, White SJ, Curiel DT, Dominiczak AF et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 2001; 38: 65–70.

    Article  CAS  Google Scholar 

  25. Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL . Molecular dissection of angiotensin II-activated human LOX-1 promoter. Arterioscler Thromb Vasc Biol 2006; 26: 1163–1168.

    Article  CAS  Google Scholar 

  26. Yamamoto M, Davydova J, Takayama K, Alemany R, Curiel DT . Transcription initiation activity of adenovirus left-end sequence in adenovirus vectors with E1 deleted. J Virol 2003; 77: 1633–1637.

    Article  CAS  Google Scholar 

  27. Papadakis ED, Nicklin SA, Baker AH, White SJ . Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4: 89–113.

    Article  CAS  Google Scholar 

  28. Pajusola K, Gruchala M, Joch H, Luscher TF, Yla-Herttuala S, Bueler H . Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol 2002; 76: 11530–11540.

    Article  CAS  Google Scholar 

  29. Hegenbarth S, Gerolami R, Protzer U, Tran PL, Brechot C, Gerken G et al. Liver sinusoidal endothelial cells are not permissive for adenovirus type 5. Hum Gene Ther 2000; 11: 481–486.

    Article  CAS  Google Scholar 

  30. Ehrhardt A, Peng PD, Xu H, Meuse L, Kay MA . Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum Gene Ther 2003; 14: 215–225.

    Article  CAS  Google Scholar 

  31. McGrory WJ, Bautista DS, Graham FL . A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 1988; 163: 614–617.

    Article  CAS  Google Scholar 

  32. von der Thusen JH, Kuiper J, Fekkes ML, de Vos P, van Berkel TJC, Biessen EAL . Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr−/− mice. FASEB J 2001; 15: U19–U37.

    Article  Google Scholar 

  33. Wilkinson GWG, Akrigg A . Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res 1992; 20: 2233–2239.

    Article  CAS  Google Scholar 

  34. Geddes BJ, Harding TC, Lightman SL, Uney JB . Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Nat Med 1997; 3: 1402–1404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ray Bush (University of Bristol) for help with animal work; Jill Tarlton and Melanie Roberts (University of Bristol) for help with virus production and technical assistance; James Uney (University of Bristol) for plasmid pXCX-CMV;34 Mike Antoniou (Kings College, London) for the provision of Cβ88 plasmid, containing the Δ89 truncated β-globin 2nd intron23 (intron B); Alessandra Tessitore (University of L'Aquila) for plasmid LC120 containing full ICAM-1 promoter; Anja Ehrhardt (Stanford University) for plasmid pHM5/hFIX.30 This work was performed at the Bristol Heart Institute, the University of Bristol. SJW was supported by British Heart Foundation intermediate fellowship (FS/03/096/16318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J White.

Additional information

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, S., Papadakis, E., Rogers, C. et al. In vitro and in vivo analysis of expression cassettes designed for vascular gene transfer. Gene Ther 15, 340–346 (2008). https://doi.org/10.1038/sj.gt.3303058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303058

Keywords

This article is cited by

Search

Quick links