Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: Zinc-finger nucleases as gene therapy agents

Abstract

Zinc-finger nucleases (ZFNs) are powerful tools for experimental gene manipulation. A number of recent papers have shown how this technology can be applied effectively to models of human gene therapy. Significant target genes and useful methods of ZFN delivery have been reported. Important strides have been made in minimizing toxic side effects observed with some ZFNs, which bodes well for their ultimate safety. New tools are available for the design and testing of ZFNs for new target genes. Applications of ZFNs to stem cells have been described, and genuine gene therapy trials appear to be on the immediate horizon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cathomen T, Joung JK . Zinc-finger nucleases: the next generation emerges. Mol Therapy 2008; 16: 1200–1207.

    Article  CAS  Google Scholar 

  2. Porteus MH . Mammalian gene targeting with designed zinc finger nucleases. Mol Therapy 2006; 13: 438–446.

    Article  CAS  Google Scholar 

  3. Santiago Y, Chan E, Liu P-Q, Orlando S, Zhang L, Urnov FD et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 2008; 105: 5809–5814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L, Kim KA et al. Gene editiing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  5. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26: 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M et al. Rapid ‘Open-Source’ engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 2008; 31: 294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA . Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008; 26: 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doyon Y, MaCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008; 26: 702–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moehle EA, Rock JM, Lee Y-L, Jouvenot Y, DeKelver RC, Gregory PD et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 2007; 104: 3055–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D . Efficient gene targeting in Drosophila with zinc finger nucleases. Genetics 2006; 172: 2391–2403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morton J, Davis MW, Jorgensen EM, Carroll D . Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 2006; 103: 16370–16375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A . Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008; 36: 3926–3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T . Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotechnol 2007; 25: 786–793.

    Article  CAS  Google Scholar 

  14. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Therapy 2008; 16: 352–358.

    Article  CAS  Google Scholar 

  15. Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH . Comparison of zinc-finger nucleases for use in gene targeting in mammalian cells. Mol Therapy 2008; 16: 707–717.

    Article  CAS  Google Scholar 

  16. Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rupniewski I et al. An improved zinc-finger nuclease architecture for highly specific genome cleavage. Nature Biotechnology 2007; 25: 778–785.

    Article  CAS  PubMed  Google Scholar 

  17. Carroll D, Morton JJ, Beumer KJ, Segal DJ . Design, construction and in vitro testing of zinc finger nucleases. Nature Protocols 2006; 1: 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  18. Mandell JG, Barbas III CF . Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 2006; 34: W516–W523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright DA, Thibodeau-Beganny S, Sander JD, Wiinfrey RJ, Hirsh AS, Eichtinger M et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 2006; 1: 1637–1652.

    Article  PubMed  Google Scholar 

  20. Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 2008; 5: 374–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paques F, Duchateau P . Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 2007; 7: 49–66.

    Article  CAS  PubMed  Google Scholar 

  22. Calos MP . The phiC31 integrase system for gene therapy. Curr Gene Ther 2006; 6: 633–645.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Carroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, D. Progress and prospects: Zinc-finger nucleases as gene therapy agents. Gene Ther 15, 1463–1468 (2008). https://doi.org/10.1038/gt.2008.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.145

Keywords

This article is cited by

Search

Quick links