Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer

Abstract

Our understanding of the role of stem cells in cancer development is evolving quickly. In the course of tumor expansion, a subpopulation of tumor cells with stem cell-like features has been noted. These cancer stem cells give rise to transit amplifying tumor cells, which comprise the majority of the tumor mass prior to terminal differentiation. Combining this finding with genetic instability, a well-known engine for cancer development and metastases, a new model emerges for cancer where normal stem cells and their cellular pathway acquire stochastic malignant abilities. In this model, when cancer stem cells self-renew, many genetic variants are produced. Just as microbes ‘learn’ to defeat antibiotics, genetically heterogeneous cancer stem cells may possibly acquire resistance to various chemotherapeutic approaches. Drug-resistant microorganisms selected by spontaneous mutation of bacterial DNA may not be so different than the drug-resistant and genetically instable cancer stem cells recurring after chemotherapeutic treatment. In this gloomy view of cancer, cancer stem cells with genetic instability can be considered as ‘the best vehicle with the best engine’, a formidable challenge for the future development of new anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Till JE, McCulloch EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–223.

    Article  CAS  PubMed  Google Scholar 

  2. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B . Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 1992; 89: 2804–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science (Washington DC) 1988; 241: 58–62.

    Article  CAS  Google Scholar 

  4. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21: 759–806.

    Article  CAS  PubMed  Google Scholar 

  5. Merkle FT, Alvarez-Buylla A . Neural stem cells in mammalian development. Curr Opin Cell Biol 2006; 18: 704–709.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson DJ . Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 2001; 30: 19–35.

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh J, Gage FH . Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 2004; 14: 461–469.

    Article  CAS  PubMed  Google Scholar 

  8. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97: 14720–14725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogel G . Stem cells. Stemness' genes still elusive. Science 2003; 302: 371.

    Article  CAS  PubMed  Google Scholar 

  10. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  11. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  PubMed  Google Scholar 

  12. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM . Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 1991; 65: 753–763.

    Article  CAS  PubMed  Google Scholar 

  13. Hosen N, Yamane T, Muijtjens M, Pham K, Clarke MF, Weissman IL . Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoietic cells. Stem Cells 2007; 25: 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  14. Pardal R, Molofsky AV, He S, Morrison SJ . Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol 2005; 70: 177–185.

    Article  CAS  PubMed  Google Scholar 

  15. Morrison SJ, Kimble J . Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441: 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  16. Caussinus E, Gonzalez C . Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005; 37: 1125–1129.

    Article  CAS  PubMed  Google Scholar 

  17. Nigg EA . Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 2006; 119: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  18. Jefford CE, Irminger-Finger I . Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006; 59: 1–14.

    Article  PubMed  Google Scholar 

  19. Duensing S, Munger K . Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta 2001; 1471: M81–M88.

    CAS  PubMed  Google Scholar 

  20. Fuller MT, Spradling AC . Male and female Drosophila germline stem cells: two versions of immortality. Science 2007; 316: 402–404.

    Article  CAS  PubMed  Google Scholar 

  21. Chen D, McKearin D . Gene circuitry controlling a stem cell niche. Curr Biol 2005; 15: 179–184.

    Article  CAS  PubMed  Google Scholar 

  22. Fukino K, Shen L, Patocs A, Mutter GL, Eng C . Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA 2007; 297: 2103–2111.

    Article  CAS  PubMed  Google Scholar 

  23. Ishiguro K, Yoshida T, Yagishita H, Numata Y, Okayasu T . Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 2006; 55: 695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA . Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 2000; 60: 2562–2566.

    CAS  PubMed  Google Scholar 

  25. Fialkow PJ . Clonal origin of human tumors. Annu Rev Med 1979; 30: 135–143.

    Article  CAS  PubMed  Google Scholar 

  26. Vogelstein B, Fearon ER, Hamilton SR, Feinberg AP . Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 1985; 227: 642–645.

    Article  CAS  PubMed  Google Scholar 

  27. Furth J, Kahn Jr JB . The transmission of leukemia of mice with a single cell. Am J Cancer 1936; 31: 276–282.

    Google Scholar 

  28. Nowell P, Hungerford D . A minute chromosome in human chromic granulocytic leukemia. Science 1960; 132: 1497.

    Google Scholar 

  29. Nowell PC . Tumor progression: a brief historical perspective. Semin Cancer Biol 2002; 12: 261–266.

    Article  CAS  PubMed  Google Scholar 

  30. Amagai M, Kawakubo Y, Tsuyuki A, Harada R . Lymphomatoid papulosis followed by Ki-1 positive anaplastic large cell lymphoma: proliferation of a common T-cell clone. J Dermatol 1995; 22: 743–746.

    Article  CAS  PubMed  Google Scholar 

  31. Garcia SB, Novelli M, Wright NA . The clonal origin and clonal evolution of epithelial tumours. Int J Exp Pathol 2000; 81: 89–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. German J . Genes which increase chromosomal instability in somatic cells and predispose to cancer. Prog Med Genet 1972; 8: 61–101.

    CAS  PubMed  Google Scholar 

  33. Sieber OM, Heinimann K, Tomlinson IP . Genomic instability—the engine of tumorigenesis? Nat Rev Cancer 2003; 3: 701–708.

    Article  CAS  PubMed  Google Scholar 

  34. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  35. Hamburger AW, Salmon SE . Primary bioassay of human tumor stem cells. Science 1977; 197: 461–463.

    Article  CAS  PubMed  Google Scholar 

  36. Salmon SE, Hamburger AW, Soehnlen B, Durie BG, Alberts DS, Moon TE . Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N Engl J Med 1978; 298: 1321–1327.

    Article  CAS  PubMed  Google Scholar 

  37. Fidler IJ, Kripke ML . Metastasis results from preexisting variant cells within a malignant tumor. Science 1977; 197: 893–895.

    Article  CAS  PubMed  Google Scholar 

  38. Fidler IJ, Hart IR . Biological diversity in metastatic neoplasms: origins and implications. Science 1982; 217: 998–1003.

    Article  CAS  PubMed  Google Scholar 

  39. Tonini GP, Romani M . Genetic and epigenetic alterations in neuroblastoma. Cancer Lett 2003; 197: 69–73.

    Article  CAS  PubMed  Google Scholar 

  40. Dick JE . Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003; 100: 3547–3549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cairns J . Mutation selection and the natural history of cancer. Nature 1975; 255: 197–200.

    Article  CAS  PubMed  Google Scholar 

  42. Buick RN, Pollak MN . Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res 1984; 44: 4909–4918.

    CAS  PubMed  Google Scholar 

  43. Sell S, Pierce GB . Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 1994; 70: 6–22.

    CAS  PubMed  Google Scholar 

  44. Conheim J . Lectures on General Pathology. A Handbook for Practicians and Students. The New Sydenham Society: London, 1889.

    Google Scholar 

  45. Hennings H, Yuspa SH . Two-stage tumor promotion in mouse skin: an alternative interpretation. J Natl Cancer Inst 1985; 74: 735–740.

    CAS  PubMed  Google Scholar 

  46. Morris RJ . A perspective on keratinocyte stem cells as targets for skin carcinogenesis. Differentiation 2004; 72: 381–386.

    Article  PubMed  Google Scholar 

  47. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  48. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  49. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  50. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  52. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barnett SC, Robertson L, Graham D, Allan D, Rampling R . Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells transformed with c-myc and H-ras form high-grade glioma after stereotactic injection into the rat brain. Carcinogenesis 1998; 19: 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  54. Passegue E, Jamieson CH, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11842–11849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  56. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C . The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 2003; 3: 695–701.

    Article  CAS  PubMed  Google Scholar 

  58. Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA . Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 2005; 15: 43–49.

    Article  CAS  PubMed  Google Scholar 

  59. Yuen KW, Warren CD, Chen O, Kwok T, Hieter P, Spencer FA . Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci USA 2007; 104: 3925–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wong JJ, Hawkins NJ, Ward RL . Colorectal cancer: a model for epigenetic tumorigenesis. Gut 2007; 56: 140–148.

    Article  CAS  PubMed  Google Scholar 

  61. Luebeck EG, Moolgavkar SH . Multistage carcinogenesis and the incidence of colorectal cancer. Proc Natl Acad Sci USA 2002; 99: 15095–15100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peltomaki P . Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 2003; 21: 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  63. Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P . Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 2007; 25: 1478–1489.

    Article  CAS  PubMed  Google Scholar 

  64. Melo JV, Barnes DJ . Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007; 7: 441–453.

    Article  CAS  PubMed  Google Scholar 

  65. Sawyers C . Targeted cancer therapy. Nature 2004; 432: 294–297.

    Article  CAS  PubMed  Google Scholar 

  66. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  67. Tsukamoto AS, Reading C, Carella A, Frassoni F, Gorin C, LaPorte J et al. Biological characterization of stem cell present in mobilized peripheral blood of CML patients. Bone Marrow Transplant 1994; 14: S25–S32.

    PubMed  Google Scholar 

  68. Jazwiec B, Mahon FX, Pigneux A, Pigeonnier V, Reiffers J . 5-Fluorouracil-resistant CD34+ cell population from peripheral blood of CML patients contains BCR-ABL-negative progenitor cells. Exp Hematol 1995; 23: 1509–1514.

    CAS  PubMed  Google Scholar 

  69. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 1996; 87: 1539–1548.

    CAS  PubMed  Google Scholar 

  70. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  71. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  72. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  73. Cortes J, O'Brien S, Kantarjian H . Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004; 104: 2204–2205.

    Article  CAS  PubMed  Google Scholar 

  74. Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J, O'Brien S et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 2007 (prepublished online September 4).

  75. Cortes J, O'Dwyer ME . Clonal evolution in chronic myelogenous leukemia. Hematol Oncol Clin North Am 2004; 18: 671–684.

    Article  PubMed  Google Scholar 

  76. Vineis P, Berwick M . The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol 2006; 35: 1151–1159.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am very grateful to Lynda Guzik for editorial assistance. This work was supported in part by the Jeannik M Littlefield-AACR Grant in Metastatic Colon Cancer Research and the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Lagasse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagasse, E. Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther 15, 136–142 (2008). https://doi.org/10.1038/sj.gt.3303068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303068

Keywords

This article is cited by

Search

Quick links