Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular and biological properties of pluripotent embryonic stem cells

Abstract

The inner cell mass of pre-implantation blastocyst stage embryos is a source of cells that can be cultured indefinitely in vitro as a self-renewing, pluripotent population. In this review, we discuss the hallmarks of pluripotent cells derived from murine and human embryos and compare signaling pathways and transcriptional networks required to maintain them in a stable, pluripotent state. Culture conditions required for maintenance of murine and human embryonic stem cells (ESCs) vary significantly, but numerous ‘critical’ factors have been identified as being important for ESC pluripotency. We will attempt to reconcile the literature in terms of what is critical, from a signal transduction perspective, for maintenance of pluripotency. Finally, we consider recent findings describing a new pluripotent population of cells derived from the mouse epiblast, which seem to be more closely related to hESCs than mESCs. This poses some interesting questions as to the developmental equivalence of hESCs and suggests how we need to re-evaluate how we think of hESCs in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Rossant J . Stem cells and lineage development in the mammalian blastocyst. Reprod Fertil Dev 2007; 19: 111–118.

    Article  CAS  Google Scholar 

  2. Nagy A, Gertsenstein M, Vintersten K, Behringer R . Manipulating the Mouse Embryo, 3rd edn. Cold Spring Harbor Laboratory Press, Chapter 2, 2003, pp 31–140.

    Google Scholar 

  3. Martin GR . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634–7638.

    Article  CAS  Google Scholar 

  4. Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156.

    Article  CAS  Google Scholar 

  5. Zwaka TP, Thomson JA . Differentiation of human embryonic stem cells occurs through symmetric cell division. Stem Cells 2005; 23: 146–149.

    Article  Google Scholar 

  6. Beddington RS, Robertson EJ . An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 1989; 105: 733–737.

    CAS  PubMed  Google Scholar 

  7. Shimosato D, Shiki M, Niwa H . Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev Biol 2007 (in press).

  8. Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 2002; 16: 784–789.

    Article  CAS  Google Scholar 

  9. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95: 379–391.

    Article  CAS  Google Scholar 

  10. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642.

    Article  CAS  Google Scholar 

  11. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643–655.

    Article  CAS  Google Scholar 

  12. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R . Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003; 17: 126–140.

    Article  CAS  Google Scholar 

  13. Niwa H . How is pluripotency determined and maintained? Development 2007; 134: 635–646.

    Article  CAS  Google Scholar 

  14. Boiani M, Scholer HR . Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005; 6: 872–884.

    Article  CAS  Google Scholar 

  15. Solter D, Knowles BB . Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978; 75: 5565–5569.

    Article  CAS  Google Scholar 

  16. Oka M, Tagoku K, Russell TL, Nakano Y, Hamazaki T, Meyer EM et al. CD9 is associated with leukemia inhibitory factor-mediated maintenance of embryonic stem cells. Mol Biol Cell 2002; 13: 1274–1281.

    Article  CAS  Google Scholar 

  17. Nash R, Neves L, Faast R, Pierce M, Dalton S . The lectin Dolichos biflorus agglutinin recognizes glycan epitopes on the surface of murine embryonic stem cells: a new tool for characterizing pluripotent cells and early differentiation. Stem Cells 2007; 25: 974–982.

    Article  CAS  Google Scholar 

  18. Brimble SN, Sherrer ES, Uhl EW, Wang E, Kelly S, Merrill Jr AH et al. The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 2007; 25: 54–62.

    Article  CAS  Google Scholar 

  19. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147. Erratum in: Science 1998; 282: 1827.

    Article  CAS  Google Scholar 

  20. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A . Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18: 399–404. Erratum in: Nat Biotechnol 2000; 18: 559.

    Article  CAS  Google Scholar 

  21. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007; 448: 191–195.

    Article  CAS  Google Scholar 

  22. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448: 196–199.

    Article  CAS  Google Scholar 

  23. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988; 336: 688–690.

    Article  CAS  Google Scholar 

  24. Wakayama S, Hikichi T, Suetsugu R, Sakaide Y, Bui HT, Mizutani E et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 2007; 25: 986–993.

    Article  CAS  Google Scholar 

  25. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R . Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2007; 2: 1963–1972.

    Article  CAS  Google Scholar 

  26. Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 1999; 18: 4261–4269.

    Article  CAS  Google Scholar 

  27. Niwa H, Burdon T, Chambers I, Smith A . Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998; 12: 2048–2060.

    Article  CAS  Google Scholar 

  28. Raz R, Lee CK, Cannizzaro LA, d'Eustachio P, Levy DE . Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 1999; 96: 2846–2851.

    Article  CAS  Google Scholar 

  29. Nichols J, Chambers I, Taga T, Smith A . Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 2001; 128: 2333–2339.

    CAS  PubMed  Google Scholar 

  30. Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT et al. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 2004; 22: 522–530.

    Article  CAS  Google Scholar 

  31. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S . LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 2005; 132: 885–896.

    Article  CAS  Google Scholar 

  32. Umehara H, Kimura T, Ohtsuka S, Nakamura T, Kitajima K, Ikawa M et al. Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3. Stem Cells 2007 (in press).

  33. Ying QL, Nichols J, Chambers I, Smith A . BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115: 281–292.

    Article  CAS  Google Scholar 

  34. Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA 2004; 101: 6027–6032.

    Article  CAS  Google Scholar 

  35. Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A . FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007; 134: 2895–2902.

    Article  CAS  Google Scholar 

  36. Takahashi K, Murakami M, Yamanaka S . Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochem Soc Trans 2005; 33 (Part 6): 1522–1525.

    Article  CAS  Google Scholar 

  37. Storm MP, Bone HK, Beck CG, Bourillot PY, Schreiber V, Damiano T et al. Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem 2007; 282: 6265–6273.

    Article  CAS  Google Scholar 

  38. Paling NR, Wheadon H, Bone HK, Welham MJ . Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem 2004; 279: 48063–48070.

    Article  CAS  Google Scholar 

  39. Welham MJ, Storm MP, Kingham E, Bone HK . Phosphoinositide 3-kinases and regulation of embryonic stem cell fate. Biochem Soc Trans 2007; 35 (Part 2): 225–228.

    Article  CAS  Google Scholar 

  40. Watanabe S, Umehara H, Murayama K, Okabe M, Kimura T, Nakano T . Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 2006; 25: 2697–2707.

    Article  CAS  Google Scholar 

  41. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  Google Scholar 

  42. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH . Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10: 55–63.

    Article  CAS  Google Scholar 

  43. Burdon T, Stracey C, Chambers I, Nichols J, Smith A . Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 1999; 210: 30–43.

    Article  CAS  Google Scholar 

  44. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA . Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2005; 2: 185–190.

    Article  CAS  Google Scholar 

  45. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271–278.

    Article  CAS  Google Scholar 

  46. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 2006; 24: 568–574.

    Article  CAS  Google Scholar 

  47. Greber B, Lehrach H, Adjaye J . Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 2007; 25: 455–464.

    Article  CAS  Google Scholar 

  48. Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 2005; 330: 934–942.

    Article  CAS  Google Scholar 

  49. Vallier L, Alexander M, Pedersen RA . Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 2005; 118 (Part 19): 4495–4509.

    Article  CAS  Google Scholar 

  50. Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D et al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2007; 25: 500–510.

    Article  CAS  Google Scholar 

  51. Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S, Shimosato D et al. Activin–Nodal signaling is involved in propagation of mouse embryonic stem cells. J Cell Sci 2007; 120 (Part 1): 55–65.

    CAS  PubMed  Google Scholar 

  52. Herpin A, Cunningham C . Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS J 2007; 274: 2977–2985.

    Article  CAS  Google Scholar 

  53. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002; 20: 1261–1264.

    Article  CAS  Google Scholar 

  54. Levine AJ, Brivanlou AH . GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development 2006; 133: 209–216.

    Article  CAS  Google Scholar 

  55. McLean AB, D'Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 2007; 25: 29–38.

    Article  CAS  Google Scholar 

  56. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE . Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23: 1534–1541.

    Article  CAS  Google Scholar 

  57. Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z et al. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 2007; 75: 299–307.

    Article  CAS  Google Scholar 

  58. Feng GS . Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res 2007; 17: 37–41.

    Article  CAS  Google Scholar 

  59. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006; 24: 185–187.

    Article  CAS  Google Scholar 

  60. Wang L, Schulz TC, Sherrer EC, Dauphin DS, Shin S, Nelson AM et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 2007 (in press).

  61. Snow MHL . Gastrulation in the mouse: growth and regionalization of the epiblast. J Embryol Exp Morphol 1977; 42: 239–303.

    Google Scholar 

  62. White J, Dalton S . Cell cycle control of embryonic stem cells. Stem Cell Rev 2005; 1: 131–138.

    Article  CAS  Google Scholar 

  63. Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 2002; 21: 8320–8333.

    Article  CAS  Google Scholar 

  64. Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S . Cdk6–cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene 2004; 23: 491–502.

    Article  CAS  Google Scholar 

  65. Savatier P, Huang S, Szekely L, Wiman KG, Samarut J . Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 1994; 9: 809–818.

    CAS  PubMed  Google Scholar 

  66. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S et al. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005; 23: 1035–1043.

    Article  CAS  Google Scholar 

  67. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956.

    Article  CAS  Google Scholar 

  68. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38: 431–440.

    Article  CAS  Google Scholar 

  69. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006; 444: 364–368.

    Article  CAS  Google Scholar 

  70. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C et al. Dissecting self-renewal in stem cells with RNA interference. Nature 2006; 442: 533–538.

    Article  CAS  Google Scholar 

  71. Pan G, Thomson JA . Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 2007; 17: 42–49.

    Article  CAS  Google Scholar 

  72. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  73. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007; 9: 625–635.

    Article  CAS  Google Scholar 

  74. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004; 116: 499–509.

    Article  CAS  Google Scholar 

  75. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17: 1115–1129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Dalton laboratory for useful discussions, and Miho Ohtsuka for helping with preparation of figures. This work was supported by grants to SD from NIH-NICHD, the Georgia Cancer Coalition and the Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Dalton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtsuka, S., Dalton, S. Molecular and biological properties of pluripotent embryonic stem cells. Gene Ther 15, 74–81 (2008). https://doi.org/10.1038/sj.gt.3303065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303065

Keywords

This article is cited by

Search

Quick links