Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clinical gene therapy using recombinant adeno-associated virus vectors

Abstract

Recombinant adeno-associated virus (rAAV) vectors possess a number of properties that may make them suitable for clinical gene therapy, including being based upon a virus for which there is no known pathology and a natural propensity to persist in human cells. Wild-type adeno-associated viruses (AAVs) are now known to be very diverse and ubiquitous in humans and nonhuman primates, which adds to the degree of confidence one may place in the natural history of AAV, namely that it has never been associated with any human tumors or other acute pathology, other than sporadic reports of having been isolated from spontaneously aborted fetuses. On the basis of this understanding of AAV biology and a wide range of preclinical studies in mice, rabbits, dogs and nonhuman primates, a growing number of clinical trials have been undertaken with this class of vectors. Altogether, over 40 clinical trials have now been approved. Although all previous trials were undertaken using AAV serotype 2 vectors, at least two current trials utilize AAV2 vector genomes cross-packaged or pseudotyped into AAV1 capsids, which appear to mediate more efficient gene delivery to muscle. The explosion of capsid isolates available for use as vectors to over 120 has now provided the potential to broaden the application of AAV-based gene therapy to other cell types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B et al. A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 1996; 7: 1145–1159.

    Article  CAS  PubMed  Google Scholar 

  2. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A et al. Evidence for gene transfer expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  3. Rubenstein RC, McVeigh U, Flotte TR, Guggino WB, Zeitlin PL . CFTR gene transduction in neonatal rabbits using an adeno-associated virus (AAV) vector. Gene Therapy 1997; 4: 384–392.

    Article  CAS  PubMed  Google Scholar 

  4. Conrad CK, Allen SS, Afione SA, Reynolds TC, Beck SE, Fee-Maki M et al. Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Therapy 1996; 3: 658–668.

    CAS  PubMed  Google Scholar 

  5. Hernandez YJ, Wang J, Kearns WG, Loiler S, Poirier A, Flotte TR . Latent adeno-associated virus infection elicits humoral but not cell- mediated immune responses in a nonhuman primate model [In Process Citation]. J Virol 1999; 73: 8549–8558.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Afione SA, Conrad CK, Kearns WG, Chunduru S, Adams R, Reynolds TC et al. In vivo model of adeno-associated virus vector persistence and rescue. J Virol 1996; 70: 3235–3241.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Flotte TR, Zeitlin PL, Reynolds TC, Heald AE, Pedersen P, Beck S et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003; 14: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  8. Flotte TR, Schwiebert EM, Zeitlin PL, Carter BJ, Guggino WB . Correlation between DNA transfer and cystic fibrosis airway epithelial cell correction after recombinant adeno-associated virus serotype 2 gene therapy. Hum Gene Ther 2005; 16: 921–928.

    Article  CAS  PubMed  Google Scholar 

  9. Wagner JA, Messner AH, Moran ML, Daifuku R, Kouyama K, Desch JK et al. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus. Laryngoscope 1999; 109: 266–274.

    Article  CAS  PubMed  Google Scholar 

  10. Aitken ML, Moss RB, Waltz DA, Dovey ME, Tonelli MR, McNamara SC et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 2001; 12: 1907–1916.

    Article  CAS  PubMed  Google Scholar 

  11. Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004; 125: 509–521.

    Article  PubMed  Google Scholar 

  12. Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL, Clancy JP et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 2007; 18: 726–732.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner JA, Nepomuceno IB, Messner AH, Moran ML, Batson EP, Dimiceli S et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther 2002; 13: 1349–1359.

    Article  CAS  PubMed  Google Scholar 

  14. Snyder RO, Miao C, Meuse L, Tubb J, Donahue BA, Lin HF et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 1999; 5: 64–70.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM . Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 1999; 96: 3906–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE . Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000; 2: 619–623.

    Article  CAS  PubMed  Google Scholar 

  17. Hagstrom JN, Couto LB, Scallan C, Burton M, McCleland ML, Fields PA et al. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood 2000; 95: 2536–2542.

    CAS  PubMed  Google Scholar 

  18. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  19. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  20. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  21. Narfstrom K, Katz ML, Ford M, Redmond TM, Rakoczy E, Bragadottir R . In vivo gene therapy in young and adult RPE65−/− dogs produces long-term visual improvement. J Hered 2003; 94: 31–37.

    Article  CAS  PubMed  Google Scholar 

  22. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  23. Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, Cideciyan AV et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006; 13: 1074–1084.

    Article  CAS  PubMed  Google Scholar 

  24. Jacobson SG, Boye SL, Aleman TS, Conlon TJ, Zeiss CJ, Roman AJ et al. Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum Gene Ther 2006; 17: 845–858.

    Article  CAS  PubMed  Google Scholar 

  25. Leone P, Janson CG, Bilaniuk L, Wang Z, Sorgi F, Huang L et al. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease [see comments] [published erratum appears in Ann Neurol 2000 Sep;48(3):398]. Ann Neurol 2000; 48: 27–38.

    Article  CAS  PubMed  Google Scholar 

  26. Leone P, Janson CG, McPhee SJ, During MJ . Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease. Curr Opin Mol Ther 1999; 1: 487–492.

    CAS  PubMed  Google Scholar 

  27. McPhee SW, Janson CG, Li C, Samulski RJ, Camp AS, Francis J et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med 2006; 8: 577–588.

    Article  CAS  PubMed  Google Scholar 

  28. Hornykiewicz O, Kish SJ . Biochemical pathophysiology of Parkinson's disease. Adv Neurol 1987; 45: 19–34.

    CAS  PubMed  Google Scholar 

  29. Mochizuki H, Mizuno Y . Gene therapy for Parkinson's disease. J Neural Transm Suppl 2003: 205–213.

  30. Mandel RJ, Spratt SK, Snyder RO, Leff SE . Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc Natl Acad Sci USA 1997; 94: 14083–14088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Macias R, Alvarez L, Guridi J et al. Pathophysiologic basis of surgery for Parkinson's disease. Neurology 2000; 55: S7–S12.

    Article  CAS  PubMed  Google Scholar 

  32. Wichmann T, DeLong MR . Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci 2003; 991: 199–213.

    Article  CAS  PubMed  Google Scholar 

  33. Feigin A, Kaplitt MG, Tang C, Lin T, Mattis P, Dhawan V et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson's disease. Proc Natl Acad Sci USA 2007; 104: 19559–19564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  35. Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J et al. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 2006; 14: 571–577.

    Article  CAS  PubMed  Google Scholar 

  36. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006; 14: 564–570.

    Article  CAS  PubMed  Google Scholar 

  37. Mandel RJ, Gage FH, Clevenger DG, Spratt SK, Snyder RO, Leff SE . Nerve growth factor expressed in the medial septum following in vivo gene delivery using a recombinant adeno-associated viral vector protects cholinergic neurons from fimbria-fornix lesion-induced degeneration. Exp Neurol 1999; 155: 59–64.

    Article  CAS  PubMed  Google Scholar 

  38. Crystal RG, Sondhi D, Hackett NR, Kaminsky SM, Worgall S, Stieg P et al. Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther 2004; 15: 1131–1154.

    Article  PubMed  Google Scholar 

  39. Jennings K, Miyamae T, Traister R, Marinov A, Katakura S, Sowders D et al. Proteasome inhibition enhances AAV-mediated transgene expression in human synoviocytes in vitro and in vivo. Mol Ther 2005; 11: 600–607.

    Article  CAS  PubMed  Google Scholar 

  40. Song S, Morgan M, Ellis T, Poirier A, Chesnut K, Wang J et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA 1998; 95: 14384–14388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song S, Embury J, Laipis PJ, Berns KI, Crawford JM, Flotte TR . Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Therapy 2001; 8: 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  42. Song S, Scott-Jorgensen M, Wang J, Poirier A, Crawford J, Campbell-Thompson M et al. Intramuscular administration of recombinant adeno-associated virus 2 alpha-1 antitrypsin (rAAV-SERPINA1) vectors in a nonhuman primate model: safety and immunologic aspects. Mol Ther 2002; 6: 329–335.

    Article  CAS  PubMed  Google Scholar 

  43. Flotte TR, Brantly ML, Spencer LT, Byrne BJ, Spencer CT, Baker DJ et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Hum Gene Ther 2004; 15: 93–128.

    Article  PubMed  Google Scholar 

  44. Chao H, Monahan PE, Liu Y, Samulski RJ, Walsh CE . Sustained and complete phenotype correction of hemophilia B mice following intramuscular injection of AAV1 serotype vectors. Mol Ther 2001; 4: 217–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T R Flotte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, C., Flotte, T. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15, 858–863 (2008). https://doi.org/10.1038/gt.2008.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.68

Keywords

This article is cited by

Search

Quick links