Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Potential of AAV vectors in the treatment of metabolic disease

Abstract

Inborn errors of metabolism are collectively common, frequently severe and in many instances difficult or impossible to treat. Accordingly, there is a compelling need to explore novel therapeutic modalities, including gene therapy, and examine multiple phenotypes where the risks of experimental therapy are outweighed by potential benefits to trial participants. Among available gene delivery systems recombinant AAV shows special promise for the treatment of metabolic disease given the unprecedented efficiencies achieved in transducing key target tissues, such as liver and muscle, in small animal models. To date over 30 metabolic disease phenotypes have been investigated in small animal studies with complete phenotype correction being achieved in a substantial proportion. Achieving adequately widespread transduction within the central nervous system, however, remains a major challenge, and will be critical to realization of the therapeutic potential of gene therapy for many of the most clinically troubling metabolic disease phenotypes. Despite the relatively low immunogenicity of AAV vectors, immune responses are also emerging as a factor requiring special attention as efforts accelerate toward human clinical translation. Four metabolic disease phenotypes have reached phase I or I/II trials with one, targeting lipoprotein lipase deficiency, showing exciting early evidence of efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zschocke J, Hoffmann GF . Vademecum Metabolicum—Manual of Metabolic Paediatrics, 2nd edn. Milupa GmbH: Friedrichsdorf, 2004.

    Google Scholar 

  2. Saudubray JM, Sedel F, Walter JH . Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis 2006; 29: 261–274.

    Article  PubMed  Google Scholar 

  3. Boelens JJ . Trends in haematopoietic cell transplantation for inborn errors of metabolism. J Inherit Metab Dis 2006; 29: 413–420.

    Article  PubMed  Google Scholar 

  4. Meyburg J, Hoffmann GF . Liver transplantation for inborn errors of metabolism. Transplantation 2005; 80: S135–S137.

    Article  PubMed  Google Scholar 

  5. Fernandes J, Saudubray J-M, van den Berghe G (eds). Inborn Metabolic Diseases: Diagnosis and Treatment. 2nd edn. Springer-Verlag: Berlin, 1996.

    Google Scholar 

  6. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD . Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 2005; 6: R2.

    Article  PubMed  Google Scholar 

  7. Rodes J, Benhamou JP, Blei A, Reichen J, Rizzetto M (eds). The Textbook of Hepatology: From Basic Science to Clinical Practice. 3rd edn. Blackwell Publishing: London, 2007.

    Book  Google Scholar 

  8. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inagaki K, Fuess S, Storm TA, Gibson GA, Mctiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  11. Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 2007; 18: 195–206.

    Article  CAS  PubMed  Google Scholar 

  12. Royo NC, Vandenberghe LH, Ma JY, Hauspurg A, Yu L, Maronski M et al. Specific AAV serotypes stably transduce primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain Res 2008; 1190: 15–22.

    Article  CAS  PubMed  Google Scholar 

  13. Davidoff AM, Gray JT, Ng CY, Zhang Y, Zhou J, Spence Y et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 2005; 11: 875–888.

    Article  CAS  PubMed  Google Scholar 

  14. Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA . Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001; 75: 6969–6976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimm D, Pandey K, Nakai H, Storm TA, Kay MA . Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. J Virol 2006; 80: 426–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Conlon TJ, Cossette T, Erger K, Choi YK, Clarke T, Scott-Jorgensen M et al. Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha1-antitrypsin vector. Mol Ther 2005; 12: 867–875.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham SC, Dane AP, Spinoulas A, Alexander IE . Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol Ther 2008; in press (accepted 14th March 2008).

  19. Stocker JP, Dehner LP (eds). Pediatric Pathology, 2nd edn. Lippincott, Williams and Wilkins: Philadelphia, 2002.

    Google Scholar 

  20. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA . Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76: 4580–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zaiss AK, Muruve DA . Immune responses to adeno-associated virus vectors. Curr Gene Ther 2005; 5: 323–331.

    Article  CAS  PubMed  Google Scholar 

  23. Vandenberghe LH, Wilson JM . AAV as an immunogen. Curr Gene Ther 2007; 7: 325–333.

    Article  CAS  PubMed  Google Scholar 

  24. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13: 419–422.

    Article  CAS  PubMed  Google Scholar 

  25. Manno CS, Arruda VR, Pierce GF, Glader B, Ragni M, Rasko J et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  26. Mingozzi F, Meulenberg J, Hui D, Basner-Tschkarajan E, de Jong A, Pos P et al. Capsid-specific T cell responses in humans upon intramuscular administration of an AAV-1 vector expressing LPLS447X transgene. Hum Gene Ther 2007; 18: 991–992.

    Google Scholar 

  27. Mingozzi F, High KA . Immune responses to AAV in clinical trials. Curr Gene Ther 2007; 7: 316–324.

    Article  CAS  PubMed  Google Scholar 

  28. Bowen DG, McCaughan GW, Bertolino P . Intrahepatic immunity: a tale of two sites? Trends Immunol 2005; 26: 512–517.

    Article  CAS  PubMed  Google Scholar 

  29. Dobrzynski E, Herzog RW . Tolerance induction by viral in vivo gene transfer. Clin Med Res 2005; 3: 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cohn EF, Zhuo J, Kelly ME, Chao HJ . Efficient induction of immune tolerance to coagulation factor IX following direct intramuscular gene transfer. J Thromb Haemost 2007; 5: 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  31. Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG . Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 2007; 7: 347–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998; 72: 8568–8577.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Donsante A, Vogler C, Muzyczka N, Crawford JM, Barker J, Flotte T et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Therapy 2001; 8: 1343–1346.

    Article  CAS  PubMed  Google Scholar 

  34. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007; 317: 477.

    Article  CAS  PubMed  Google Scholar 

  35. Bell P, Moscioni AD, McCarter RJ, Wu D, Gao G, Hoang A et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther 2006; 14: 34–44.

    Article  CAS  PubMed  Google Scholar 

  36. Bell P, Wang L, Lebherz C, Flieder DB, Bove MS, Wu D et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol Ther 2005; 12: 299–306.

    Article  CAS  PubMed  Google Scholar 

  37. Rohrbach M, Clarke JT . Treatment of lysosomal storage disorders:progress with enzyme replacement therapy. Drugs 2007; 67: 2697–2716.

    Article  CAS  PubMed  Google Scholar 

  38. Desmaris N, Verot L, Puech JP, Caillaud C, Vanier MT, Heard JM . Prevention of neuropathology in the mouse model of Hurler syndrome. Ann Neurol 2004; 56: 68–76.

    Article  CAS  PubMed  Google Scholar 

  39. Krivit W, Sung JH, Shapiro EG, Lockman LA . Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant 1995; 4: 385–392.

    Article  CAS  PubMed  Google Scholar 

  40. Lin CY, Ho CH, Hsieh YH, Kikuchi T . Adeno-associated virus-mediated transfer of human acid maltase gene results in a transient reduction of glycogen accumulation in muscle of Japanese quail with acid maltase deficiency. Gene Therapy 2002; 9: 554–563.

    Article  CAS  PubMed  Google Scholar 

  41. Fraites Jr TJ, Schleissing MR, Shanely RA, Walter GA, Cloutier DA, Zolotukhin I et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther 2002; 5: 571–578.

    Article  CAS  PubMed  Google Scholar 

  42. Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A et al. Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 2005; 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  43. Sun B, Zhang H, Franco LM, Brown T, Bird A, Schneider A et al. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 2005; 11: 889–898.

    Article  CAS  PubMed  Google Scholar 

  44. Franco LM, Sun B, Yang X, Bird A, Zhang H, Schneider A et al. Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol Ther 2005; 12: 876–884.

    Article  CAS  PubMed  Google Scholar 

  45. Sun B, Zhang H, Benjamin Jr DK, Brown T, Bird A, Young SP et al. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II. Mol Ther 2006; 14: 822–830.

    Article  CAS  PubMed  Google Scholar 

  46. Sun B, Bird A, Young SP, Kishnani PS, Chen YT, Koeberl DD . Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am J Hum Genet 2007; 81: 1042–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Watson GL, Sayles JN, Chen C, Elliger SS, Elliger CA, Raju NR et al. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Therapy 1998; 5: 1642–1649.

    Article  CAS  PubMed  Google Scholar 

  48. Daly TM, Okuyama T, Vogler C, Haskins ME, Muzyczka N, Sands MS . Neonatal intramuscular injection with recombinant adeno-associated virus results in prolonged beta-glucuronidase expression in situ and correction of liver pathology in mucopolysaccharidosis type VII mice. Hum Gene Ther 1999; 10: 85–94.

    Article  CAS  PubMed  Google Scholar 

  49. Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH . Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol 1999; 160: 17–27.

    Article  CAS  PubMed  Google Scholar 

  50. Bosch A, Perret E, Desmaris N, Heard JM . Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther 2000; 1: 63–70.

    Article  CAS  PubMed  Google Scholar 

  51. Daly TM, Ohlemiller KK, Roberts MS, Vogler CA, Sands MS . Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer. Gene Therapy 2001; 8: 1291–1298.

    Article  CAS  PubMed  Google Scholar 

  52. Elliger SS, Elliger CA, Lang C, Watson GL . Enhanced secretion and uptake of beta-glucuronidase improves adeno-associated viral-mediated gene therapy of mucopolysaccharidosis type VII mice. Mol Ther 2002; 5: 617–626.

    Article  CAS  PubMed  Google Scholar 

  53. Hennig AK, Ogilvie JM, Ohlemiller KK, Timmers AM, Hauswirth WW, Sands MS . AAV-mediated intravitreal gene therapy reduces lysosomal storage in the retinal pigmented epithelium and improves retinal function in adult MPS VII mice. Mol Ther 2004; 10: 106–116.

    Article  CAS  PubMed  Google Scholar 

  54. Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, Wolfe JH . Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 2003; 77: 7034–7040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moscioni D, Morizono H, McCarter RJ, Stern A, Cabrera-Luque J, Hoang A et al. Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol Ther 2006; 14: 25–33.

    Article  CAS  PubMed  Google Scholar 

  56. Oh HJ, Park ES, Kang S, Jo I, Jung SC . Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer. Pediatr Res 2004; 56: 278–284.

    Article  CAS  PubMed  Google Scholar 

  57. Mochizuki S, Mizukami H, Ogura T, Kure S, Ichinohe A, Kojima K et al. Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Therapy 2004; 11: 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  58. Ding Z, Georgiev P, Thony B . Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Therapy 2006; 13: 587–593.

    Article  CAS  PubMed  Google Scholar 

  59. Embury JE, Charron CE, Martynyuk A, Zori AG, Liu B, Ali SF et al. PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Pah(enu2) mice. Brain Res 2007; 1127: 136–150.

    Article  CAS  PubMed  Google Scholar 

  60. Park ES, Oh HJ, Kruger WD, Jung SC, Lee JS . Recombinant adeno-associated virus mediated gene transfer in a mouse model for homocystinuria. Exp Mol Med 2006; 38: 652–661.

    Article  CAS  PubMed  Google Scholar 

  61. Erger KE, Conlon TJ, Leal NA, Zori R, Bobik TA, Flotte TR . In vivo expression of human ATP:cob(I)alamin adenosyltransferase (ATR) using recombinant adeno-associated virus (rAAV) serotypes 2 and 8. J Gene Med 2007; 9: 462–469.

    Article  CAS  PubMed  Google Scholar 

  62. Matalon R, Surendran S, Rady PL, Quast MJ, Campbell GA, Matalon KM et al. Adeno-associated virus-mediated aspartoacylase gene transfer to the brain of knockout mouse for canavan disease. Mol Ther 2003; 7: 580–587.

    Article  CAS  PubMed  Google Scholar 

  63. McPhee SW, Francis J, Janson CG, Serikawa T, Hyland K, Ong EO et al. Effects of AAV-2-mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease. Brain Res Mol Brain Res 2005; 135: 112–121.

    Article  CAS  PubMed  Google Scholar 

  64. Mian A, Lee B . Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism. Trends Mol Med 2002; 8: 583–589.

    Article  CAS  PubMed  Google Scholar 

  65. Wilcken B . Problems in the management of urea cycle disorders. Mol Genet Metab 2004; 81 (Suppl 1): S86–S91.

    Article  CAS  PubMed  Google Scholar 

  66. Reish O, Plante RJ, Tuchman M . Four new mutations in the ornithine transcarbamylase gene. Biochem Med Metab Biol 1993; 50: 169–175.

    Article  CAS  PubMed  Google Scholar 

  67. Tuchman M, Jaleel N, Morizono H, Sheehy L, Lynch MG . Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum Mutat 2002; 19: 93–107.

    Article  CAS  PubMed  Google Scholar 

  68. Snyderman SE . Liver failure and neurologic disease in a patient with homocystinuria. Mol Genet Metab 2006; 87: 210–212.

    Article  CAS  PubMed  Google Scholar 

  69. Kasahara M, Horikawa R, Tagawa M, Uemoto S, Yokoyama S, Shibata Y et al. Current role of liver transplantation for methylmalonic acidemia: a review of the literature. Pediatr Transplant 2006; 10: 943–947.

    Article  PubMed  Google Scholar 

  70. Morioka D, Kasahara M, Horikawa R, Yokoyama S, Fukuda A, Nakagawa A . Efficacy of living donor liver transplantation for patients with methylmalonic acidemia. Am J Transplant 2007; 7: 2782–2787.

    Article  CAS  PubMed  Google Scholar 

  71. Chandler RJ, Sloan J, Fu H, Tsai M, Stabler S, Allen R et al. Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle. BMC Med Genet 2007; 8: 64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chandler RJ, Venditti CP . Adenovirus-mediated gene delivery rescues a neonatal lethal murine model of mut(0) methylmalonic acidemia. Hum Gene Ther 2008; 19: 53–60.

    Article  CAS  PubMed  Google Scholar 

  73. Owen R, Mandel RJ, Ammini CV, Conlon TJ, Kerr DS, Stacpoole PW et al. Gene therapy for pyruvate dehydrogenase E1alpha deficiency using recombinant adeno-associated virus 2 (rAAV2) vectors. Mol Ther 2002; 6: 394–399.

    Article  CAS  PubMed  Google Scholar 

  74. Stacpoole PW, Owen R, Flotte TR . The pyruvate dehydrogenase complex as a target for gene therapy. Curr Gene Ther 2003; 3: 239–245.

    Article  CAS  PubMed  Google Scholar 

  75. Qi X, Lewin AS, Hauswirth WW, Guy J . Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Invest Ophthalmol Vis Sci 2003; 44: 1088–1096.

    Article  PubMed  Google Scholar 

  76. Flierl A, Chen Y, Coskun PE, Samulski RJ, Wallace DC . Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene Therapy 2005; 12: 570–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qi X, Sun L, Hauswirth WW, Lewin AS, Guy J . Use of mitochondrial antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch Ophthalmol 2007; 125: 268–272.

    Article  CAS  PubMed  Google Scholar 

  78. Owen IV R, Lewin AP, Peel A, Wang J, Guy J, Hauswirth WW et al. Recombinant adeno-associated virus vector-based gene transfer for defects in oxidative metabolism. Hum Gene Ther 2000; 11: 2067–2078.

    Article  CAS  PubMed  Google Scholar 

  79. Lebherz C, Gao G, Louboutin JP, Millar J, Rader D, Wilson JM . Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia. J Gene Med 2004; 6: 663–672.

    Article  CAS  PubMed  Google Scholar 

  80. Lebherz C, Sanmiguel J, Wilson JM, Rader DJ . Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovasc Diabetol 2007; 6: 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ross CJ, Twisk J, Meulenberg JM, Liu G, van den OK, Moraal E et al. Long-term correction of murine lipoprotein lipase deficiency with AAV1-mediated gene transfer of the naturally occurring LPL(S447X) beneficial mutation. Hum Gene Ther 2004; 15: 906–919.

    Article  CAS  PubMed  Google Scholar 

  82. Ross CJ, Twisk J, Bakker AC, Miao F, Verbart D, Rip J et al. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation. Hum Gene Ther 2006; 17: 487–499.

    Article  CAS  PubMed  Google Scholar 

  83. Beaty RM, Jackson M, Peterson D, Bird A, Brown T, Benjamin Jr DK et al. Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors. Gene Therapy 2002; 9: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  84. Ghosh A, Allamarvdasht M, Pan CJ, Sun MS, Mansfield BC, Byrne BJ et al. Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer. Gene Therapy 2006; 13: 321–329.

    Article  CAS  PubMed  Google Scholar 

  85. Koeberl DD, Sun BD, Damodaran TV, Brown T, Millington DS, Benjamin Jr DK et al. Early, sustained efficacy of adeno-associated virus vector-mediated gene therapy in glycogen storage disease type Ia. Gene Therapy 2006; 13: 1281–1289.

    Article  CAS  PubMed  Google Scholar 

  86. Chou JY, Mansfield BC . Gene therapy for type I glycogen storage diseases. Curr Gene Ther 2007; 7: 79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song S, Morgan M, Ellis T, Poirier A, Chesnut K, Wang J et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA 1998; 95: 14384–14388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De B, Heguy A, Leopold PL, Wasif N, Korst RJ, Hackett NR et al. Intrapleural administration of a serotype 5 adeno-associated virus coding for alpha1-antitrypsin mediates persistent, high lung and serum levels of alpha1-antitrypsin. Mol Ther 2004; 10: 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  89. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh. 10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther 2006; 13: 67–76.

    Article  CAS  PubMed  Google Scholar 

  90. Kugler S, Hahnewald R, Garrido M, Reiss J . Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum-cofactor deficiency. Am J Hum Genet 2007; 80: 291–297.

    Article  CAS  PubMed  Google Scholar 

  91. Seppen J, Bakker C, de Jong B, Kunne C, van den OK, Vandenberghe K et al. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats. Mol Ther 2006; 13: 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  92. Stolberg SG . The biotech death of Jesse Gelsinger. The New York Times. 28 November 1999.

  93. Gene therapy clinical trials worldwide. J Gene Med. http://www.wiley.co.uk/genmed/clinical/, 2007, accessed 19 February 2008.

  94. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 2002; 13: 1391–1412.

    Article  CAS  PubMed  Google Scholar 

  95. Flotte TR, Brantly ML, Spencer LT, Byrne BJ, Spencer CT, Baker DJ et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Hum Gene Ther 2004; 15: 93–128.

    Article  PubMed  CAS  Google Scholar 

  96. Crystal RG, Sondhi D, Hackett NR, Kaminsky SM, Worgall S, Stieg P et al. Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther 2004; 15: 1131–1154.

    Article  PubMed  Google Scholar 

  97. Rip J, Nierman MC, Sierts JA, Petersen W, van den OK, Van Raalte D et al. Gene therapy for lipoprotein lipase deficiency: working toward clinical application. Hum Gene Ther 2005; 16: 1276–1286.

    Article  CAS  PubMed  Google Scholar 

  98. McPhee SW, Janson CG, Li C, Samulski RJ, Camp AS, Francis J et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med 2006; 8: 577–588.

    Article  CAS  PubMed  Google Scholar 

  99. Nierman M, Twisk J, Hermens W, Bakker AC, van Deventer S, Rekke B et al. Safety and efficacy of AMT-010, an adeno-associated virus-based gene therapy vector administered to lipoprotein lipase-deficient subjects. Hum Gene Ther 2007; 18: 942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I E Alexander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, I., Cunningham, S., Logan, G. et al. Potential of AAV vectors in the treatment of metabolic disease. Gene Ther 15, 831–839 (2008). https://doi.org/10.1038/gt.2008.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.64

Keywords

This article is cited by

Search

Quick links