Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Therapeutic potential of genetically modified mesenchymal stem cells

Abstract

Bone marrow-derived mesenchymal stem cells (MSC) are multipotent adult stem cells of mesodermal origin localized within the bone marrow compartment. MSC possess multilineage property making them useful for a number of potential therapeutic applications. MSC can be isolated from the bone marrow, expanded in culture and genetically modified to serve as cell carriers for local or systemic therapy. Despite their ability to differentiate into osteoblasts, chondrocytes, adipocytes, myocytes and neuronal cells under appropriate stimuli, distinct molecular signals that guide migration of MSC to specific targets largely remain unknown. The pluripotent nature of MSC makes them ideal resources for regenerative medicine, graft-versus-host disease and autoimmune diseases. Despite their therapeutic potential in a variety of diseases, certain issues need to be critically addressed both in in vitro expansion of these cells without losing their stem cell properties, and the long-term fate of the transplanted MSC in vivo following ex vivo modifications. Finally, understanding of complex, multistep and multifactorial differentiation pathways from pluripotent stem cells to functional tissues will allow us to manipulate MSC for the formation of competent composite tissues in situ. The present article will provide comprehensive account of the characteristics of MSC, their isolation and culturing, multilineage properties and potential therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Väänänen HK . Mesenchymal stem cells. Ann Med 2005; 37: 469–479.

    Article  Google Scholar 

  2. Da Silva ML, Chagastelles PC, Nardi NB . Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119: 2204–2213.

    Article  Google Scholar 

  3. Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC . Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 2006; 12: 3007–3019.

    Article  CAS  Google Scholar 

  4. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF . Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2005; 5: 1571–1584.

    Article  CAS  Google Scholar 

  5. Giordano A, Galderisi U, Marino IR . From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27–35.

    Article  CAS  Google Scholar 

  6. Romieu-Mourez R, François M, Boivin MN, Stagg J, Galipeau J . Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol 2007; 179: 1549–1558.

    Article  CAS  Google Scholar 

  7. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 2007; 84: 231–237.

    Article  CAS  Google Scholar 

  8. Fibbe WE, Nauta AJ, Roelofs H . Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci 2007; 1106: 272–278.

    Article  CAS  Google Scholar 

  9. Chateauvieux S, Ichante JL, Delorme B, Frouin V, Pietu G, Langonne A et al. Molecular profile of mouse stromal mesenchymal stem cells. Physiol Genomics 2007; 29: 128–138.

    Article  CAS  Google Scholar 

  10. Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 2007; 25: 1307–1316.

    Article  CAS  Google Scholar 

  11. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B . Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 2005; 23: 392–402.

    Article  CAS  Google Scholar 

  12. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 1999; 5: 267–277.

    Article  CAS  Google Scholar 

  13. Keilhoff G, Goihl A, Langnäse K, Fansa H, Wolf G . Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 2006; 85: 11–24.

    Article  CAS  Google Scholar 

  14. Marion NW, Mao JJ . Mesenchymal stem cells and tissue engineering. Methods Enzymol 2006; 420: 339–361.

    Article  CAS  Google Scholar 

  15. Kumar S, Ponnazhagan S . Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 2007; 21: 3917–3927.

    Article  CAS  Google Scholar 

  16. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–705.

    Article  CAS  Google Scholar 

  17. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107: 1395–1402.

    Article  CAS  Google Scholar 

  18. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006; 14: 840–850.

    Article  CAS  Google Scholar 

  19. Ng M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 2007; 21: 3197–3207.

    Article  Google Scholar 

  20. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003; 288: 51–59.

    Article  CAS  Google Scholar 

  21. Schuleri KH, Boyle AJ, Hare JM . Mesenchymal stem cells for cardiac regenerative therapy. Exp Pharmacol 2007; 180: 195–218.

    CAS  Google Scholar 

  22. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M . Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2008; 77: 134–142.

    Article  CAS  Google Scholar 

  23. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002; 99: 2199–2204.

    Article  CAS  Google Scholar 

  24. Kopen GC, Prockop DJ, Phinney DG . Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 10711–10716.

    Article  CAS  Google Scholar 

  25. Guillot PV, Abass O, Bassett JH, Shefelbine SJ, Bou-Gharios G, Chan J et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 2008; 111: 1717–1725.

    Article  CAS  Google Scholar 

  26. Chamberlain G, Fox J, Ashton B, Middleton J . Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25: 2739–2749.

    Article  CAS  Google Scholar 

  27. Parr AM, Tator CH, Keating A . Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007; 40: 609–619.

    Article  CAS  Google Scholar 

  28. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX et al. Human marrow stromal cell therapy for stroke in rat. Neurology 2002; 59: 514–523.

    Article  CAS  Google Scholar 

  29. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100: 8407–8411.

    Article  CAS  Google Scholar 

  30. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.

    Article  CAS  Google Scholar 

  31. Tang J, Xie Q, Pan G, Wang J, Wang M . Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 2006; 30: 353–361.

    Article  Google Scholar 

  32. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  33. Schmidt A, Ladage D, Steingen C, Brixius K, Schinköthe T, Klinz F et al. Mesenchymal stem cells transmigrate over the endothelial barrier. Euro J Cell Biol 2006; 85: 1179–1188.

    Article  CAS  Google Scholar 

  34. Becker AD, Van Hummelen P, Bakkus M, Broek IV, De Wever J, Waele MD et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 2007; 92: 440–449.

    Article  Google Scholar 

  35. Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007; 104: 11915–11920.

    Article  CAS  Google Scholar 

  36. Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    Article  CAS  Google Scholar 

  37. Kaplan RN, Psaila B, Lyden D . Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 2006; 25: 521–529.

    Article  Google Scholar 

  38. Hall B, Andreeff M, Marini F . The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted gene delivery vehicles. Handb Exp Pharmacol 2007; 180: 263–283.

    Article  CAS  Google Scholar 

  39. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  40. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted delivery vehicles for anticancer agents. J Natl Can Inst 2004; 96: 1593–1603.

    Article  CAS  Google Scholar 

  41. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene therapy 2004; 11: 1155–1164.

    Article  CAS  Google Scholar 

  42. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203: 1235–1247.

    Article  CAS  Google Scholar 

  43. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007; 105: 157–167.

    Article  Google Scholar 

  44. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow derived mesenchymal stem cells. Cancer Gene Ther 2007; 14: 894–903.

    Article  CAS  Google Scholar 

  45. Elzaouk L, Moelling K, Pavlovic J . Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006; 15: 865–874.

    Article  CAS  Google Scholar 

  46. Rabin N, Kyriakou C, Coulton L, Gallagher OM, Buckle C, Benjamin R et al. A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia 2007; 21: 2181–2191.

    Article  CAS  Google Scholar 

  47. Bacigalupo A . Management of acute graft-versus-host disease. Br J Haematol 2007; 137: 87–98.

    Article  CAS  Google Scholar 

  48. Stagg J, Galipeau J . Immune plasticity of bone marrow derived mesenchymal stromal cells. Handb Exp Pharmacol 2007; 180: 45–66.

    Article  CAS  Google Scholar 

  49. El-Badri NS, Wang BY, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exper hematol 1998; 26: 110–114.

    CAS  Google Scholar 

  50. Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS . Different effects of BMP-2 on marrow stromal cells from human and rat bone. Cells tissues organs 2004; 176: 109–119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Institutes of Health (Grants R01CA98817, R01AR50251) and the US Army Department of Defense (Grants BC044440 and PC050949) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ponnazhagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Chanda, D. & Ponnazhagan, S. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 15, 711–715 (2008). https://doi.org/10.1038/gt.2008.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.35

Keywords

This article is cited by

Search

Quick links