Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer

Abstract

A novel class of cationic hyperbranched polymers, containing branched oligoethylenimine (OEI 800 Da) as core, diacrylate esters as linkers and oligoamines as surface modification, was synthesized and evaluated regarding their structure–activity relationship as gene carriers. We show that pseudodendritic core characteristics as well as different surface modifications on the core influence DNA-binding ability, cytotoxicity and transfection efficiency. As most promising gene carrier, the pseudodendrimer HD O, that is, the OEI 800 Da core modified with hexane-1,6-diol diacrylate and surface-modified with OEI 800 Da, was identified. HD O exhibits efficient DNA-condensing ability to nanosized polyplexes (100–200 nm), low cytotoxicity, a degradation half-life of 3 days at 37 °C at physiological pH and in vitro reporter gene-expression levels similar to high molecular weight linear and branched polyethylenimines (PEIs) (LPEI and BPEI). In vivo studies in mice reveal that HD O/DNA polyplexes upon i.v. tail-vein injection have the potential for transfection of tumor tissue at levels comparable to that obtained with LPEI. Importantly, HD O was better tolerated than LPEI, while transgene expression was more tumor-specific and much lower in all other investigated organs, especially in the lung (15 000-fold lower compared with LPEI).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Edelstein ML, Abedi MR, Wixon J, Edelstein RM . Gene therapy clinical trials worldwide 1989–2004—an overview. J Gene Med 2004; 6: 597–602.

    Article  Google Scholar 

  2. Wagner E . Strategies to improve DNA polyplexes for in vivo gene transfer: will ‘artificial viruses’ be the answer? Pharm Res 2004; 21: 8–14.

    Article  CAS  Google Scholar 

  3. Niidome T, Huang L . Gene therapy progress and prospects: nonviral vectors. Gene Therapy 2002; 9: 1647–1652.

    Article  CAS  Google Scholar 

  4. Lynn DM, Langer R . Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc 2000; 122: 10761–10768.

    Article  CAS  Google Scholar 

  5. Lim YB, Kim SM, Suh H, Park JS . Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug Chem 2002; 13: 952–957.

    Article  CAS  Google Scholar 

  6. Forrest ML, Koerber JT, Pack DW . A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug Chem 2003; 14: 934–940.

    Article  CAS  Google Scholar 

  7. Zhong Z, Song Y, Engbersen JF, Lok MC, Hennink WE, Feijen J . A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J Control Release 2005; 109: 317–329.

    Article  CAS  Google Scholar 

  8. Kloeckner J, Wagner E, Ogris M . Degradable gene carriers based on oligomerized polyamines. Eur J Pharm Sci 2006; 29: 414–425.

    Article  CAS  Google Scholar 

  9. Kloeckner J, Bruzzano S, Ogris M, Wagner E . Gene carriers based on hexanediol diacrylate linked oligoethylenimine: effect of chemical structure of polymer on biological properties. Bioconjug Chem 2006; 17: 1339–1345.

    Article  CAS  Google Scholar 

  10. Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH et al. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 2007; 28: 735–744.

    Article  CAS  Google Scholar 

  11. Hoon JJ, Christensen LV, Yockman JW, Zhong Z, Engbersen JF, Jong KW et al. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials 2007; 28: 1912–1917.

    Article  Google Scholar 

  12. Lee Y, Mo H, Koo H, Park JY, Cho MY, Jin GW et al. Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug Chem 2007; 18: 13–18.

    Article  CAS  Google Scholar 

  13. Gosselin MA, Guo W, Lee RJ . Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine 1032. Bioconjug Chem 2001; 12: 989–994.

    Article  CAS  Google Scholar 

  14. Anderson DG, Lynn DM, Langer R . Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed Engl 2003; 42: 3153–3158.

    Article  CAS  Google Scholar 

  15. Haensler J, Szoka Jr FC . Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4: 372–379.

    Article  CAS  Google Scholar 

  16. Tang MX, Redemann CT, Szoka Jr FC . In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 1996; 7: 703–714.

    Article  CAS  Google Scholar 

  17. Tang MX, Szoka FC . The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes 2. Gene Therapy 1997; 4: 823–832.

    Article  CAS  Google Scholar 

  18. Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M . ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Therapy 1997; 4: 1100–1106.

    Article  CAS  Google Scholar 

  19. Zou SM, Erbacher P, Remy JS, Behr JP . Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000; 2: 128–134.

    Article  CAS  Google Scholar 

  20. Bosman AW, Janssen HM, Meijer EW . About dendrimers: structure, physical properties, and applications. Chem Rev 1999; 99: 1665–1688.

    Article  CAS  Google Scholar 

  21. Sonawane ND, Szoka Jr FC, Verkman AS . Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003; 278: 44826–44831.

    Article  CAS  Google Scholar 

  22. Goula D, Benoist D, Mantero S, Merlo G, Levi G, Demeneix BA . Polyethylenimine-based intravenous delivery of transgenes to mouse lung 246. Gene Therapy 1998; 5: 1291–1295.

    Article  CAS  Google Scholar 

  23. Wightman L, Kircheis R, Rossler V, Carotta S, Ruzicka R, Kursa M et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001; 3: 362–372.

    Article  CAS  Google Scholar 

  24. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Therapy 2001; 8: 28–40.

    Article  CAS  Google Scholar 

  25. Kircheis R, Schuller S, Brunner S, Ogris M, Heider KH, Zauner W et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1999; 1: 111–120.

    Article  CAS  Google Scholar 

  26. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  Google Scholar 

  27. Chollet P, Favrot MC, Hurbin A, Coll JL . Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 2002; 4: 84–91.

    Article  Google Scholar 

  28. Ahn CH, Chae SY, Bae YH, Kim SW . Biodegradable poly(ethylenimine) for plasmid DNA delivery 1. J Control Release 2002; 80: 273–282.

    Article  CAS  Google Scholar 

  29. Kim YH, Park JH, Lee M, Kim YH, Park TG, Kim SW . Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release 2005; 103: 209–219.

    Article  CAS  Google Scholar 

  30. Kloeckner J, Boeckle S, Persson D, Roedl W, Ogris M, Berg K et al. DNA polyplexes based on degradable oligoethylenimine-derivatives: combination with EGF receptor targeting and endosomal release functions. J Control Release 2006; 116: 115–122.

    Article  CAS  Google Scholar 

  31. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS . Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J Control Release 2003; 89: 365–374.

    Article  CAS  Google Scholar 

  32. Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 2006; 17: 728–734.

    Article  CAS  Google Scholar 

  33. Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, Hennink WE . Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules 2004; 5: 32–39.

    Article  CAS  Google Scholar 

  34. Zhang ZY, Smith BD . High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjug Chem 2000; 11: 805–814.

    Article  CAS  Google Scholar 

  35. Plank C, Zauner W, Wagner E . Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 1998; 34: 21–35.

    Article  CAS  Google Scholar 

  36. Wightman L, Kircheis R, Rossler V, Carotta S, Ruzicka R, Kursa M et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001; 3: 362–372.

    Article  CAS  Google Scholar 

  37. Ogris M, Kotha AK, Tietze N, Wagner E, Palumbo FS, Giammona G et al. Novel biocompatible cationic copolymers based on polyaspartylhydrazide being potent as gene vector on tumor cells. Pharm Res 2007 (in press).

  38. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 2003; 89: 113–125.

    Article  CAS  Google Scholar 

  39. Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U et al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release 2006; 112: 257–270.

    Article  CAS  Google Scholar 

  40. Russ V, Wagner E . Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm Res 2007; 24: 1047–1057.

    Article  CAS  Google Scholar 

  41. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H . Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 2003; 14: 581–587.

    Article  CAS  Google Scholar 

  42. Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E . Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug Chem 1992; 3: 533–539.

    Article  CAS  Google Scholar 

  43. Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M . Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 2004; 6: 1102–1111.

    Article  CAS  Google Scholar 

  44. Hill HD, Straka JG . Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 1988; 170: 203–208.

    Article  CAS  Google Scholar 

  45. von Gersdorff K, Ogris M, Wagner E . Cryoconserved shielded and EGF receptor targeted DNA polyplexes: cellular mechanisms. Eur J Pharm Biopharm 2005; 60: 279–285.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Dr Lerche for 1H NMR spectroscopic measurements, Michael Günther for help with flow cytometry, Gelja Maiwald and Markus Kovac for support in animal experiments and Olga Brück for skillful assistance in preparing the manuscript. This work was supported by EC funded project GIANT, DFG SFB486 and SPP1230 and the excellence cluster Nanosystems Initiative Munich (NIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Wagner.

Additional information

Supplementary information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russ, V., Elfberg, H., Thoma, C. et al. Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Ther 15, 18–29 (2008). https://doi.org/10.1038/sj.gt.3303046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303046

Keywords

This article is cited by

Search

Quick links