Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Isolated limb perfusion: a novel delivery system for wild-type p53 and fiber-modified oncolytic adenoviruses to extremity sarcoma

Abstract

Isolated limb perfusion (ILP) is a limb salvage surgical modality used to deliver chemotherapy and biologic agents to locally advanced and recurrent extremity soft tissue sarcoma (STS), and may be readily tailored for delivery of gene therapy. We set out to test the feasibility of delivering AdFLAGp53 (replication incompetent adenovirus bearing FLAG-tagged wild-type p53) and Ad.hTC.GFP/E1a.RGD (a fiber-modified, replication selective oncolytic adenovirus) into human leiomyosarcoma xenografts by ILP. Nude rats bearing SKLMS-1 tumors in their hind limbs underwent ILP with escalating doses of AdLacZ or AdFLAGp53 (study 1), or with Ad.CMV.GFP.RGD or Ad.hTC.GFP/E1a.RGD (study 2) following in vitro confirmation of therapeutic potential in STS cell lines and strains. Seventy-two hours after delivery, reverse transcription-polymerase chain reaction confirmed FLAGp53 expression, and immunohistochemistry confirmed diffuse upregulation of p21CIP1/WAF1 in ILP-treated tumors. Ad.hTC.GFP/E1a.RGD perfused tumors demonstrated robust macroscopic transgene expression throughout their substance, but not in perfused normal tissues, 21 days after delivery. Intra-tumoral viral replication was confirmed by immunohistochemical staining for early (E1a) and late (hexon) viral protein expression. Terminal deoxynucleotidyl transferase-mediated-digoxigenin nick end-labeling staining identified foci of cell death within regions of viral replication. In conclusion, therapeutic adenoviral gene therapy against limb borne human STS can be successfully delivered by ILP and warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics. CA Cancer J Clin 2006; 56: 106–130.

    Article  Google Scholar 

  2. Gaynor JJ, Tan CC, Casper ES, Collin CF, Friedrich C, Shiu M et al. Refinement of clinicopathologic staging for localized soft tissue sarcoma of the extremity: a study of 423 adults. J Clin Oncol 1992; 10: 1317–1329.

    Article  CAS  Google Scholar 

  3. Kane III JM . Surveillance strategies for patients following surgical resection of soft tissue sarcomas. Curr Opin Oncol 2004; 16: 328–332.

    Article  Google Scholar 

  4. Lewis JJ, Leung D, Casper ES, Woodruff J, Hajdu SI, Brennan MF . Multifactorial analysis of long-term follow-up (more than 5 years) of primary extremity sarcoma. Arch Surg 1999; 134: 190–194.

    Article  CAS  Google Scholar 

  5. Grunhagen DJ, de Wilt JH, Graveland WJ, Verhoef C, van Geel AN, Eggermont AM . Outcome and prognostic factor analysis of 217 consecutive isolated limb perfusions with tumor necrosis factor-alpha and melphalan for limb-threatening soft tissue sarcoma. Cancer 2006; 106: 1776–1784.

    Article  CAS  Google Scholar 

  6. Noorda EM, Vrouenraets BC, Nieweg OE, Van Coevorden F, Kroon BB . Isolated limb perfusion: what is the evidence for its use? Ann Surg Oncol 2004; 11: 837–845.

    Article  Google Scholar 

  7. Feig BW . Isolated limb perfusion for extremity sarcoma. Curr Oncol Rep 2000; 2: 491–494.

    Article  CAS  Google Scholar 

  8. Milas M, Feig B, Yu D, Oriuchi N, Cromeens D, Ge T et al. Isolated limb perfusion in the sarcoma-bearing rat: a novel preclinical gene delivery system. Clin Cancer Res 1997; 3: 2197–2203.

    CAS  PubMed  Google Scholar 

  9. Mocellin S, Rossi CR, Brandes A, Nitti D . Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches. Cancer Treat Rev 2006; 32: 9–27.

    Article  CAS  Google Scholar 

  10. de Wilt JH, Bout A, Eggermont AM, van Tiel ST, de Vries MW, ten Hagen TL et al. Adenovirus-mediated interleukin 3 beta gene transfer by isolated limb perfusion inhibits growth of limb sarcoma in rats. Hum Gene Ther 2001; 12: 489–502.

    Article  CAS  Google Scholar 

  11. Eggermont AM, de Wilt JH, ten Hagen TL . Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 2003; 4: 429–437.

    Article  Google Scholar 

  12. de Roos WK, de Wilt JH, van Der Kaaden ME, Manusama ER, de Vries MW, Bout A et al. Isolated limb perfusion for local gene delivery: efficient and targeted adenovirus-mediated gene transfer into soft tissue sarcomas. Ann Surg 2000; 232: 814–821.

    Article  CAS  Google Scholar 

  13. Van Etten B, Van Tiel ST, Ambagtsheer G, Eggermont AM, Ten Hagen TL . Isolated limb perfusion based anti-p21ras gene therapy in a rat rhabdomyosarcoma. Anticancer Res 2004; 24: 2295–2301.

    CAS  PubMed  Google Scholar 

  14. Pollock R, Lang A, Ge T, Sun D, Tan M, Yu D . Wild-type p53 and a p53 temperature-sensitive mutant suppress human soft tissue sarcoma by enhancing cell cycle control. Clin Cancer Res 1998; 4: 1985–1994.

    CAS  PubMed  Google Scholar 

  15. Milas M, Yu D, Lang A, Ge T, Feig B, El-Naggar AK et al. Adenovirus-mediated p53 gene therapy inhibits human sarcoma tumorigenicity. Cancer Gene Ther 2000; 7: 422–429.

    Article  CAS  Google Scholar 

  16. Zhan M, Yu D, Lang A, Li L, Pollock RE . Wild type p53 sensitizes soft tissue sarcoma cells to doxorubicin by down-regulating multidrug resistance-1 expression. Cancer 2001; 92: 1556–1566.

    Article  CAS  Google Scholar 

  17. Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 2000; 60: 3655–3661.

    CAS  PubMed  Google Scholar 

  18. Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999; 91: 763–771.

    Article  CAS  Google Scholar 

  19. Weill D, Mack M, Roth J, Swisher S, Proksch S, Merritt J et al. Adenoviral-mediated p53 gene transfer to non-small cell lung cancer through endobronchial injection. Chest 2000; 118: 966–970.

    Article  CAS  Google Scholar 

  20. Warren RS, Kirn DH . Liver-directed viral therapy for cancer p53-targeted adenoviruses and beyond. Surg Oncol Clin North Am 2002; 11: 571–588.

    Article  Google Scholar 

  21. Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 2003; 21: 2508–2518.

    Article  CAS  Google Scholar 

  22. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  Google Scholar 

  23. Yotnda P, Zompeta C, Heslop HE, Andreeff M, Brenner MK, Marini F . Comparison of the efficiency of transduction of leukemic cells by fiber-modified adenoviruses. Hum Gene Ther 2004; 15: 1229–1242.

    Article  CAS  Google Scholar 

  24. Davis JJ, Wang L, Dong F, Zhang L, Guo W, Teraishi F et al. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther 2006; 13: 720–723.

    Article  CAS  Google Scholar 

  25. Schmitz M, Graf C, Gut T, Sirena D, Peter I, Dummer R et al. Melanoma cultures show different susceptibility towards E1A-, E1B-19 kDa- and fiber-modified replication-competent adenoviruses. Gene Ther 2006; 13: 893–905.

    Article  CAS  Google Scholar 

  26. Witlox AM, Van Beusechem VW, Molenaar B, Bras H, Schaap GR, Alemany R et al. Conditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo. Clin Cancer Res 2004; 10: 61–67.

    Article  CAS  Google Scholar 

  27. Hieken TJ, Das Gupta TK . Mutant p53 expression: a marker of diminished survival in well-differentiated soft tissue sarcoma. Clin Cancer Res 1996; 2: 1391–1395.

    CAS  PubMed  Google Scholar 

  28. Taubert H, Meye A, Wurl P . Prognosis is correlated with p53 mutation type for soft tissue sarcoma patients. Cancer Res 1996; 56: 4134–4136.

    CAS  PubMed  Google Scholar 

  29. Toguchida J, Yamaguchi T, Ritchie B, Beauchamp RL, Dayton SH, Herrera GE et al. Mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res 1992; 52: 6194–6199.

    CAS  PubMed  Google Scholar 

  30. Pollock RE, Lang A, Luo J, El-Naggar AK, Yu D . Soft tissue sarcoma metastasis from clonal expansion of p53 mutated tumor cells. Oncogene 1996; 12: 2035–2039.

    CAS  PubMed  Google Scholar 

  31. McNeish IA, Bell SJ, Lemoine NR . Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Therapy 2004; 11: 497–503.

    Article  CAS  Google Scholar 

  32. Zeimet AG, Marth C . Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 2003; 4: 415–422.

    Article  CAS  Google Scholar 

  33. Fang B, Roth JA . The role of gene therapy in combined modality treatment strategies for cancer. Curr Opin Mol Ther 2003; 5: 475–482.

    CAS  PubMed  Google Scholar 

  34. Freytag SO, Kim JH, Brown SL, Barton K, Lu M, Chung M . Gene therapy strategies to improve the effectiveness of cancer radiotherapy. Expert Opin Biol Ther 2004; 4: 1757–1770.

    Article  CAS  Google Scholar 

  35. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med 2001; 7: 781–787.

    Article  CAS  Google Scholar 

  36. Hu M, Nicolson GL, Trent II JC, Yu D, Zhang L, Lang A et al. Characterization of 11 human sarcoma cell strains: evaluation of cytogenetics, tumorigenicity, metastasis, and production of angiogenic factors. Cancer 2002; 95: 1569–1576.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MD Anderson Cancer Center Core Grant P30-CA16672 from the National Cancer Institute, and NIH RO1 CA 67802 (to REP), CA 109570 (to DY) and CA 098582-01A1 (to BF). We thank Peggy Tinkey and Gary Klaassen, Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center for expert assistance with refinement of the ILP model; and Carol M Johnston for immunohistochemistry technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Lev.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannay, J., Davis, J., Yu, D. et al. Isolated limb perfusion: a novel delivery system for wild-type p53 and fiber-modified oncolytic adenoviruses to extremity sarcoma. Gene Ther 14, 671–681 (2007). https://doi.org/10.1038/sj.gt.3302911

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302911

Keywords

This article is cited by

Search

Quick links