Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid

Abstract

Recombinant adenoviruses are frequently used as gene transfer vehicles for therapeutic gene delivery. Strategies to amend their tropism include the incorporation of polypeptides with high affinity for cellular receptors. Single-chain antibodies have a great potential to achieve such cell type specificity. In this study, we evaluated the efficiency of incorporation of a single-chain antibody fused with the adenovirus minor capsid protein IX in the capsid of adenovirus type 5 vectors. To this end, the codons for the single-chain antibody fragments (scFv) 13R4 were fused with those encoding of pIX via a 75-Angstrom spacer sequence. The 13R4 is a hyper-stable single-chain antibody directed against β-galactosidase, which was selected for its capacity to fold correctly in a reducing environment such as the cytoplasm. A lentiviral vector was used to stably express the pIX.flag.75.13R4.MYC.HIS fusion gene in 911 helper cells. Upon propagation of pIX-gene deleted human adenovirus-5 vectors on these cells, the pIX-fusion protein was efficiently incorporated in the capsid. Here, the 13R4 scFv was functional as was evident from its capacity to bind its ligand β-galactosidase. These data demonstrate that the minor capsid protein IX can be used as an anchor for incorporation of single-chain antibodies in the capsids of adenovirus vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. St George JA . Gene therapy progress and prospects: adenoviral vectors. Gene Therapy 2003; 10: 1135–1141.

    Article  CAS  Google Scholar 

  2. Magnusson MK, Hong SS, Henning P, Boulanger P, Lindholm L . Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 2002; 4: 356–370.

    Article  CAS  Google Scholar 

  3. Biocca S, Ruberti F, Tafani M, Pierandrei-Amaldi P, Cattaneo A . Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (NY) 1995; 13: 1110–1115.

    Article  CAS  Google Scholar 

  4. Hedley SJ, Auf der MA, Hohn S, Escher D, Barberis A, Glasgow JN et al. An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Therapy 2006; 13: 88–94.

    Article  CAS  Google Scholar 

  5. Cattaneo A, Biocca S . The selection of intracellular antibodies. Trends Biotechnol 1999; 17: 115–121.

    Article  CAS  Google Scholar 

  6. Wickham TJ . Genetic targeting of adenoviral vectors. In: Curiel DT, Douglas JT (eds). Vector Targeting for Therapeutic Gene Delivery. Wiley-Liss: Hoboken, 2002; pp: 143–170.

    Google Scholar 

  7. Curiel DT . Strategies to alter the tropism of adenoviral vectors via genetic capsid modification. In: Curiel DT, Douglas JT (eds). Vector Targeting for Therapeutic Gene Delivery. Wiley-Liss: Hoboken, New Jersey, USA, 2002; pp: 171–200.

    Chapter  Google Scholar 

  8. Tavladoraki P, Girotti A, Donini M, Arias FJ, Mancini C, Morea V et al. A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants. Eur J Biochem 1999; 262: 617–624.

    Article  CAS  Google Scholar 

  9. Martineau P, Jones P, Winter G . Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol 1998; 280: 117–127.

    Article  CAS  Google Scholar 

  10. Ohage EC, Wirtz P, Barnikow J, Steipe B . Intrabody construction and expression. II. A synthetic catalytic Fv fragment. J Mol Biol 1999; 291: 1129–1134.

    Article  CAS  Google Scholar 

  11. Proba K, Worn A, Honegger A, Pluckthun A . Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol 1998; 275: 245–253.

    Article  CAS  Google Scholar 

  12. Jung S, Honegger A, Pluckthun A . Selection for improved protein stability by phage display. J Mol Biol 1999; 294: 163–180.

    Article  CAS  Google Scholar 

  13. Saban SD, Nepomuceno RR, Gritton LD, Nemerow GR, Stewart PL . CryoEM structure at 9A resolution of an adenovirus vector targeted to hematopoietic cells. J Mol Biol 2005; 349: 526–537.

    Article  CAS  Google Scholar 

  14. Marsh MP, Campos SK, Baker ML, Chen CY, Chiu W, Barry MA . CryoEM of protein IX-modified adenoviruses suggests a new position for the C-terminus of protein IX. J Virol 2006; 80: 11881–11886.

    Article  CAS  Google Scholar 

  15. Fabry CM, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RW et al. A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 2005; 24: 1645–1654.

    Article  CAS  Google Scholar 

  16. Saban SD, Silvestry M, Nemerow GR, Stewart PL . Visualization of α-helices in a 6 Angstrom resolution cryoEM structure of adenovirus allows refinement of capsid protein assignments. J Virol 2006; 80: 12049–12059.

    Article  CAS  Google Scholar 

  17. Vellinga J, van der Heijdt S, Hoeben RC . The adenovirus capsid: major progress in minor proteins. J Gen Virol 2005; 86: 1581–1588.

    Article  CAS  Google Scholar 

  18. Campos SK, Barry MA . Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology 2006; 349: 453–462.

    Article  CAS  Google Scholar 

  19. Vellinga J, Rabelink MJ, Cramer SJ, van den Wollenberg DJ, Van der MH, Leppard KN et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004; 78: 3470–3479.

    Article  CAS  Google Scholar 

  20. Campos SK, Parrott MB, Marsh M, Chiu W, Barry MA . Metabolically biotinylated viruses for vector targetting, virus purification, and capsid imaging. Mol Ther 2004; 9: S390.

    Article  Google Scholar 

  21. Le LP, Everts M, Dmitriev IP, Davydova JG, Yamamoto M, Curiel DT . Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 2004; 3: 105–116.

    Article  CAS  Google Scholar 

  22. Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 1996; 14: 309–314.

    Article  CAS  Google Scholar 

  23. Vellinga J, Uil TG, de Vrij J, Rabelink MJ, Lindholm L, Hoeben RC . A system for efficient generation of adenovirus protein IX-producing helper cell lines. J Gene Med 2006; 8: 147–154.

    Article  CAS  Google Scholar 

  24. Vellinga J, van den Wollenberg DJ, van der Heijdt S, Rabelink MJ, Hoeben RC . The coiled-coil domain of the adenovirus type 5 protein IX is dispensable for capsid incorporation and thermostability. J Virol 2005; 79: 3206–3210.

    Article  CAS  Google Scholar 

  25. Miller JH . A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2006.

    Google Scholar 

  26. Lombardi A, Sperandei M, Cantale C, Giacomini P, Galeffi P . Functional expression of a single-chain antibody specific for the HER2 human oncogene in a bacterial reducing environment. Protein Exp Purif 2005; 44: 10–15.

    Article  CAS  Google Scholar 

  27. Jung S, Pluckthun A . Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng 1997; 10: 959–966.

    Article  CAS  Google Scholar 

  28. der Maur AA, Zahnd C, Fischer F, Spinelli S, Honegger A, Cambillau C et al. Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework. J Biol Chem 2002; 277: 45075–45085.

    Article  Google Scholar 

  29. Ewert S, Honegger A, Pluckthun A . Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 2004; 34: 184–199.

    Article  CAS  Google Scholar 

  30. Worn A, Pluckthun A . Stability engineering of antibody single-chain Fv fragments. J Mol Biol 2001; 305: 989–1010.

    Article  CAS  Google Scholar 

  31. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, van Ormondt H, Hoeben RC et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996; 7: 215–222.

    Article  CAS  Google Scholar 

  32. Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 2004; 9: 209–217.

    Article  CAS  Google Scholar 

  33. Barry SC, Harder B, Brzezinski M, Flint LY, Seppen J, Osborne WR . Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 2001; 12: 1103–1108.

    Article  CAS  Google Scholar 

  34. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996; 70: 7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mautino MR, Ramsey WJ, Reiser J, Morgan RA . Modified human immunodeficiency virus-based lentiviral vectors display decreased sensitivity to trans-dominant Rev. Hum Gene Ther 2000; 11: 895–908.

    Article  CAS  Google Scholar 

  37. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000; 96: 4103–4110.

    CAS  PubMed  Google Scholar 

  38. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  Google Scholar 

  39. Swick AG, Janicot M, Cheneval-Kastelic T, McLenithan JC, Lane MD . Promoter-cDNA-directed heterologous protein expression in Xenopus laevis oocytes. Proc Natl Acad Sci USA 1992; 89: 1812–1816.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ronald WAL Limpens (Leiden University Medical Center) for help with immuno-affinity electron microscopy, and participants in the GIANT program for stimulating discussions. This work was supported by the Technology Foundation STW (program LGN66.3977), and the European Union through the 6th Framework Program GIANT (Contract no.: 512087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Hoeben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vellinga, J., de Vrij, J., Myhre, S. et al. Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid. Gene Ther 14, 664–670 (2007). https://doi.org/10.1038/sj.gt.3302908

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302908

Keywords

This article is cited by

Search

Quick links