Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy progress and prospects: RNA aptamers

Abstract

Aptamers are oligonucleotides evolved in vitro or in nature to bind target ligands with high affinity and specificity. They are emerging as powerful tools in the fields of therapeutics, drug development, target validation and diagnostics. Aptamers are attractive alternatives to antibody- and small-molecule-based therapeutics owing to their stability, low toxicity, low immunogenicity and improved safety. With the recent approval of the first aptamer drug Macugen by the US FDA, there is great impetus to develop therapeutic aptamers that can target a wide array of disease states. The recent demonstration that aptamer activity can be reversed by the administration of a simple antidote greatly enhances the potential value of aptamers as therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Nimjee SM, Rusconi CP, Sullenger BA . Aptamers: an emerging class of therapeutics. Ann Rev Med 2005; 56: 555–583.

    Article  CAS  Google Scholar 

  2. Pestourie C, Tavitian B, Duconge F . Aptamers against extracellular targets for in vivo applications. Biochimie 2005; 87: 921–930.

    Article  CAS  Google Scholar 

  3. Huang DB, Vu D, Cassiday LA, Zimmerman JM, Maher III LJ, Ghosh G . Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc Natl Acad Sci USA 2003; 100: 9268–9273.

    Article  CAS  Google Scholar 

  4. Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS et al. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 2005; 12: 25–33.

    Article  CAS  Google Scholar 

  5. Vater A, Klussman S . Toward third-generation aptamers: spiegelmers and their therapeutic prospects. Curr Opin Drug Dev 2003; 6: 253–261.

    CAS  Google Scholar 

  6. Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick Jr G et al. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 2004; 22: 1423–1428.

    Article  CAS  Google Scholar 

  7. Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 2004; 21: 2234–2246.

    Article  CAS  Google Scholar 

  8. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E . Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res 2003; 63: 7483–7489.

    CAS  PubMed  Google Scholar 

  9. Lee JH, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT et al. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA 2005; 102: 18902–18907.

    Article  CAS  Google Scholar 

  10. Morishita R . Perspective in progress of cardiovascular gene therapy. J Pharmacol Sci 2004; 95: 1–8.

    Article  CAS  Google Scholar 

  11. Tomita N, Azuma H, Kaneda Y, Ogihara T, Morishita R . Application of decoy oligodeoxynucleotides-based approach to renal diseases. Curr Drug Targets Infect Disord 2004; 5: 717–733.

    Article  CAS  Google Scholar 

  12. Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson Jr TB, Lorenz TJ et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 2005; 294: 2446–2454.

    Article  Google Scholar 

  13. Mann MJ . Transcription factor decoys: a new model for disease intervention. Ann N Y Acad Sci 2005; 1058: 128–139.

    Article  CAS  Google Scholar 

  14. Matsuda N, Hattori Y, Takahashi Y, Nishihira J, Jesmin S, Kobayashi M et al. Therapeutic effect of in vivo transfection of transcription factor decoy to NF-kappaB on septic lung in mice. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1248–L1255.

    Article  CAS  Google Scholar 

  15. Ogushi I, Iimuro Y, Seki E, Son G, Hirano T, Hada T et al. Nuclear factor kappa B decoy oligodeoxynucleotides prevent endotoxin-induced fatal liver failure in a murine model. Hepatology 2003; 38: 335–344.

    Article  CAS  Google Scholar 

  16. De Vry CG, Prasad S, Komuves L, Lorenzana C, Parham C, Le T et al. Non-viral’ delivery of NF-{kappa}B decoy ameliorates murine inflammatory bowel disease and restores tissue homeostasis. Gut 2006, Epub ahead of print.

  17. Becker RC, Rusconi C, Sullenger B . Nucleic acid aptamers in therapeutic anticoagulation. Technology, development and clinical application. Thromb Haemost 2005; 93: 1014–1020.

    Article  CAS  Google Scholar 

  18. Pavlov V, Zorn M, Kramer R . Probing single-stranded DNA and its biomolecular interactions through direct catalytic activation of factor XII, a protease of the blood coagulation cascade. Biochem Biophys Res Commun 2006; 349: 1011–1015.

    Article  CAS  Google Scholar 

  19. www.archemix.com.

  20. www.nuvelo.com.

  21. Thiel KA . Oligo oligarchy – the surprisingly small world of aptamers. Nat Biotechnol 2004; 22: 649–651.

    Article  CAS  Google Scholar 

  22. www.antisoma.com.

  23. Girvan AC, Teng Y, Casson LK, Thomas SD, Juliger S, Ball MW et al. AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther 2006; 5: 1790–1799.

    Article  CAS  Google Scholar 

  24. Akiyama H, Kachi S, Silva RL, Umeda N, Hackett SF, McCauley D et al. Intraocular injection of an aptamer that binds PDGF-B: a potential treatment for proliferative retinopathies. J Cell Physiol 2006; 207: 407–412.

    Article  CAS  Google Scholar 

  25. Jeon SH, Kayhan B, Ben-Yedidia T, Arnon R . A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem 2004; 279: 48410–48419.

    Article  CAS  Google Scholar 

  26. First Data Bank. Based on AWP. April 2006. www.firstdatabank.com.

  27. www.macular.org/news.

  28. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al., MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N Eng J Med 2006; 355: 1419–1431.

    Article  CAS  Google Scholar 

  29. www.agingeye.net/mainnews/lucentis.php.

  30. San Francisco Chronicle. San Francisco Chronicle. San Francisco, 2006.

  31. www.medicalnewstoday.com.

  32. Nimjee SM, Keys JR, Pitoc GA, Quick G, Rusconi CP, Sullenger BA . A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol Ther 2006; 14: 408–415.

    Article  CAS  Google Scholar 

  33. Heckel A, Mayer G . Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. J Am Chem Soc 2005; 127: 822–823.

    Article  CAS  Google Scholar 

  34. Mayer G, Krock L, Mikat V, Engeser M, Heckel A . Light-induced formation of G-quadruplex DNA secondary structures. Chembiochem 2005; 6: 1966–1970.

    Article  CAS  Google Scholar 

  35. Heckel A, Buff MC, Raddatz MS, Muller J, Potzsch B, Mayer G . An anticoagulant with light-triggered antidote activity. Angew Chem Int Ed Engl 2006; 45: 6748–6750.

    Article  CAS  Google Scholar 

  36. Held DM, Kissel JD, Patterson JT, Nickens DG, Burke DH . HIV-1 inactivation by nucleic acid aptamers. Front Biosci 2006; 11: 89–112.

    Article  CAS  Google Scholar 

  37. Choi KH, Park MW, Lee SY, Jeon MY, Kim MY, Lee HK et al. Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol Cancer Ther 2006; 5: 2428–2434.

    Article  CAS  Google Scholar 

  38. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 2003; 8: 196–206.

    Article  CAS  Google Scholar 

  39. Mi J, Zhang X, Rabbani ZN, Liu Y, Su Z, Vujaskovic Z et al. H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acid Res 2006; 34: 3577–3584.

    Article  CAS  Google Scholar 

  40. Joshi PJ, Fisher TS, Prasad VR . Anti-HIV inhibitors based on nucleic acids: emergence of aptamers as potent antivirals. Curr Drug Targets Infect Disord 2003; 3: 383–400.

    Article  CAS  Google Scholar 

  41. Wolkowicz R, Nolan GP . Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Ther 2005; 12: 467–476.

    Article  CAS  Google Scholar 

  42. Zhang Z, Blank M, Schluesener HJ . Nucleic acid aptamers in human viral disease. Arch Immunol Ther Exp (Warsz) 2004; 52: 307–315.

    CAS  Google Scholar 

  43. Michienzi A, Castanotto D, Lee N, Li S, Zaia JA, Rossi JJ . RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci 2003; 1002: 63–71.

    Article  CAS  Google Scholar 

  44. Nickens DG, Patterson JT, Burke DH . Inhibition of HIV-1 reverse transcriptase by RNA aptamers in Escherichia coli. RNA 2003; 9: 1029–1033.

    Article  CAS  Google Scholar 

  45. Hannoush RN, Carriero S, Min KL, Damha MJ . Selective inhibition of HIV-1 reverse transcriptase (HIV-1 RT) RNase H by small RNA hairpins and dumbbells. Chembiochem 2004; 5: 527–533.

    Article  CAS  Google Scholar 

  46. Somasunderam A, Ferguson MR, Rojo DR, Thiviyanathan V, Li X, O’Brien WA et al. Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. Biochemistry 2005; 44: 10388–10395.

    Article  CAS  Google Scholar 

  47. Khati M, Schuman M, Ibrahim J, Sattentau Q, Gordon S, James W . Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J Virol 2003; 77: 12692–12698.

    Article  CAS  Google Scholar 

  48. Dey AK, Khati M, Tang M, Wyatt R, Lea SM, James W . An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction. J Virol 2005; 79: 13806–13810.

    Article  CAS  Google Scholar 

  49. Kuwasaki T, Hatta M, Takeuchi H, Takaku H . Inhibition of human immunodeficiency virus 1 replication in vitro by a self-stabilized oligonucleotide with 2′-O-methyl-guanosine-uridine quadruplex motifs. J Antimicrob Chemother 2003; 51: 813–819.

    Article  CAS  Google Scholar 

  50. Nishikawa F, Kakiuchi N, Funaji K, Fukuda K, Sekiya S, Nishikawa S . Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res 2003; 31: 1935–1943.

    Article  CAS  Google Scholar 

  51. Karpusas M, Lucci J, Ferrant J, Benjamin C, Taylor FR, Strauch K et al. Structure of CD40 ligand in complex with the Fab fragment of a neutralizing humanized antibody. Structure (Cambridge) 2001; 9: 321–329.

    Article  CAS  Google Scholar 

  52. Morris KV, Rossi JJ . Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Therapy 2006; 13: 553–558.

    Article  CAS  Google Scholar 

  53. Bartosch B, Cosset FL . Strategies for retargeted gene delivery using vectors derived from lentiviruses. Curr Gene Ther 2004; 4: 427–443.

    Article  CAS  Google Scholar 

  54. Banerjea A, Li MJ, Remling L, Rossi J, Akkina R . Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages. AIDS Res Ther 2004; 1: 2.

    Article  Google Scholar 

  55. Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005; 12: 900–909.

    Article  CAS  Google Scholar 

  56. Akkina R, Banerjea A, Bai J, Anderson J, Li MJ, Rossi JJ . siRNAs, ribozymes and RNA decoys in modeling stem cell-based gene therapy for HIV/AIDS. Anticancer Res 2003; 23: 1997–2005.

    CAS  PubMed  Google Scholar 

  57. Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R . Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004; 64: 7668–7672.

    Article  CAS  Google Scholar 

  58. Farokhzad OC, Karp JM, Langer R . Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006; 3: 311–324.

    Article  CAS  Google Scholar 

  59. Chu TC, Marks III JW, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD et al. Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 2006; 66: 5989–5992.

    Article  CAS  Google Scholar 

  60. Chu TC, Twu KY, Ellington AD, Levy M . Aptamer mediated siRNA delivery. Nucleic Acids Res 2006; 34: e73.

    Article  Google Scholar 

  61. McNamara II JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006; 24: 1005–1015.

    Article  CAS  Google Scholar 

  62. Rossi JJ . Partnering aptamer and RNAi technologies. Mol Ther 2006; 14: 461–462.

    Article  CAS  Google Scholar 

  63. An CI, Trinh VB, Yokobayashi Y . Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA 2006; 12: 710–716.

    Article  CAS  Google Scholar 

  64. Chan R, Gilbert M, Thompson KM, Marsh HN, Epstein DM, Pendergrast PS . Co-expression of anti-NF-kappaB RNA aptamers and siRNAs leads to maximal suppression of NF-kappaB activity in mammalian cells. Nucleic Acids Res 2006; 34: e36.

    Article  Google Scholar 

  65. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L . A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 2003; 100: 15416–15421.

    Article  CAS  Google Scholar 

  66. Fitter S, James R . Deconvolution of a complex target using DNA aptamers. J Biol Chem 2005; 280: 34193–34201.

    Article  CAS  Google Scholar 

  67. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 2006; 103: 11838–11843.

    Article  CAS  Google Scholar 

  68. Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 2005; 3: e123.

    Article  Google Scholar 

  69. Blank M, Blind M . Aptamers as tools for target validation. Curr Opin Chem Biol 2005; 9: 336–342.

    Article  CAS  Google Scholar 

  70. Proske D, Blank M, Buhmann R, Resch A . Aptamers – basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 2005; 69: 367–374.

    Article  CAS  Google Scholar 

  71. www.clinicaltrials.gov/ct/show/NCT00074997.

  72. Russell S . High hopes for AIDS therapy: experimental treatment fortifies the body's own stem cells with an enzyme that could block the virus’ relentless advance. San Francisco Chronicle: San Francisco, 2006.

    Google Scholar 

  73. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004; 78: 2601–2605.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Juliana Layzer for reading the manuscript. Thanks also to DT Gewirth for help with the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Sullenger.

Additional information

Conflict of interest

Bruce Sullenger is a scientific founder of Regado Biosciences Inc, a Biotechnology company focused upon the development of aptamer–antidote pairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Que-Gewirth, N., Sullenger, B. Gene therapy progress and prospects: RNA aptamers. Gene Ther 14, 283–291 (2007). https://doi.org/10.1038/sj.gt.3302900

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302900

Keywords

This article is cited by

Search

Quick links