Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor

Abstract

As coxsackievirus B3 (CoxB3) and adenoviruses may cause acute myocarditis and inflammatory cardiomyopathy, isolation of the common coxsackievirus–adenovirus-receptor (CAR) has provided an interesting new target for molecular antiviral therapy. Whereas many viruses show high mutation rates enabling them to develop escape mutants, mutations of their cellular virus receptors are far less likely. We report on antiviral efficacies of CAR gene silencing by short hairpin (sh)RNAs in the cardiac-derived HL-1 cell line and in primary neonatal rat cardiomyocytes (PNCMs). Treatment with shRNA vectors mediating RNA interference against the CAR resulted in almost complete silencing of receptor expression both in HL-1 cells and PNCMs. Whereas CAR was silenced in HL-1 cells as early as 24 h after vector treatment, its downregulation in PNCMs did not become significant before day 6. CAR knockout resulted in inhibition of CoxB3 infections by up to 97% in HL-1 cells and up to 90% in PNCMs. Adenovirus was inhibited by only 75% in HL-1 cells, but up to 92% in PNCMs. We conclude that CAR knockout by shRNA vectors is efficient against CoxB3 and adenovirus in primary cardiac cells, but the efficacy of this approach in vivo may be influenced by cell type-specific silencing kinetics in different tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

AdV:

adenoviral vector

CAR:

coxsackievirus–adenovirus-receptor

CoxB3:

coxsackievirus B3

PNCMs:

primary neonatal rat cardiomyocytes

RNAi:

RNA interference

shCAR:

shRNA against CAR

shRNA:

short hairpin RNA

siRNA:

short interfering RNA.

References

  1. Bowles NE, Richardson PJ, Olsen EG, Archard LC . Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1986; 1: 1120–1123.

    Article  CAS  PubMed  Google Scholar 

  2. Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R et al. Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 2003; 42: 466–472.

    Article  PubMed  Google Scholar 

  3. Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 2005; 112: 1965–1970.

    Article  PubMed  Google Scholar 

  4. Poller W, Kuhl U, Tschoepe C, Pauschinger M, Fechner H, Schultheiss HP . Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy. J Mol Med 2005; 83: 579–586.

    Article  CAS  PubMed  Google Scholar 

  5. Bitko V, Musiyenko A, Shulyayeva O, Barik S . Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005; 11: 50–55.

    Article  CAS  PubMed  Google Scholar 

  6. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003; 21: 639–644.

    Article  CAS  PubMed  Google Scholar 

  7. Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL et al. Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther 2006; 13: 411–421.

    Article  CAS  PubMed  Google Scholar 

  8. Takigawa Y, Nagano-Fujii M, Deng L, Hidajat R, Tanaka M, Mizuta H et al. Suppression of hepatitis C virus replicon by RNA interference directed against the NS3 and NS5B regions of the viral genome. Microbiol Immunol 2004; 48: 591–598.

    Article  CAS  PubMed  Google Scholar 

  9. Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol 2006; 80: 3559–3566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yoon JS, Kim SH, Shin MC, Hong SK, Jung YT, Khang IG et al. Inhibition of herpesvirus-6B RNA replication by short interference RNAs. J Biochem Mol Biol 2004; 37: 383–385.

    CAS  PubMed  Google Scholar 

  11. Wiebusch L, Truss M, Hagemeier C . Inhibition of human cytomegalovirus replication by small interfering RNAs. J Gen Virol 2004; 85: 179–184.

    Article  CAS  PubMed  Google Scholar 

  12. Lu A, Zhang H, Zhang X, Wang H, Hu Q, Shen L et al. Attenuation of SARS coronavirus by a short hairpin RNA expression plasmid targeting RNA-dependent RNA polymerase. Virology 2004; 324: 84–89.

    Article  CAS  PubMed  Google Scholar 

  13. Park WS, Hayafune M, Miyano-Kurosaki N, Takaku H . Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Therapy 2003; 10: 2046–2050.

    Article  CAS  PubMed  Google Scholar 

  14. Merl S, Michaelis C, Jaschke B, Vorpahl M, Seidl S, Wessely R . Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation 2005; 111: 1583–1592.

    Article  CAS  PubMed  Google Scholar 

  15. Werk D, Schubert S, Lindig V, Grunert HP, Zeichhardt H, Erdmann VA et al. Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor. Biol Chem 2005; 386: 857–863.

    Article  CAS  PubMed  Google Scholar 

  16. Sabariegos R, Gimenez-Barcons M, Tapia N, Clotet B, Martinez MA . Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J Virol 2006; 80: 571–577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wilson JA, Richardson CD . Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 2005; 79: 7050–7058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Boden D, Pusch O, Lee F, Tucker L, Ramratnam B . Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003; 77: 11531–11535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gitlin L, Stone JK, Andino R . Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J Virol 2005; 79: 1027–1035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ et al. Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 2005; 79: 11742–11751.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Anderson J, Akkina R . HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005; 2: 1.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Arrighi JF, Pion M, Wiznerowicz M, Geijtenbeek TB, Garcia E, Abraham S et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol 2004; 78: 10848–10855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao X, Wang H, Sairenji T . Inhibition of Epstein–Barr virus (EBV) reactivation by short interfering RNAs targeting p38 mitogen-activated protein kinase or c-myc in EBV-positive epithelial cells. J Virol 2004; 78: 11798–11806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ping YH, Chu CY, Cao H, Jacque JM, Stevenson M, Rana TM . Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology 2004; 1: 46.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kameoka M, Nukuzuma S, Itaya A, Tanaka Y, Ota K, Ikuta K et al. RNA interference directed against poly(ADP-ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J Virol 2004; 78: 8931–8934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 1998; 72: 415–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Coyne CB, Bergelson JM . Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006; 124: 119–131.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe A, Arai M, Yamazaki M, Koitabashi N, Wuytack F, Kurabayashi M . Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J Mol Cell Cardiol 2004; 37: 691–698.

    Article  CAS  PubMed  Google Scholar 

  29. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326–330.

    Article  CAS  PubMed  Google Scholar 

  31. Kuhl U, Pauschinger M, Schwimmbeck PL, Seeberg B, Lober C, Noutsias M et al. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 2003; 107: 2793–2798.

    Article  PubMed  Google Scholar 

  32. Kandolf R . Virus etiology of inflammatory cardiomyopathy. Dtsch Med Wochenschr 2004; 129: 2187–2192.

    Article  CAS  PubMed  Google Scholar 

  33. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  34. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  35. Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nemerow GR . Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001; 75: 5405–5409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA . Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16: 2294–2306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000; 268: 382–390.

    Article  CAS  PubMed  Google Scholar 

  38. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan J, Cheung PK, Zhang HM, Chau D, Yang D . Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol 2005; 79: 2151–2159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fechner H, Suckau L, Kurreck J, Sipo I, Wang X, Pinkert S et al. Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. Gene Therapy 2007; 14: 211–218.

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda Y, Gu Y, Iwanaga Y, Hoshijima M, Oh SS, Giordano FJ et al. Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer. Circulation 2002; 105: 502.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  43. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3–e9.

    Article  CAS  PubMed  Google Scholar 

  44. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  45. Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM . The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 2001; 98: 15191–15196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Honda T, Saitoh H, Masuko M, Katagiri-Abe T, Tominaga K, Kozakai I et al. The coxsackievirus–adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 2000; 77: 19–28.

    Article  CAS  PubMed  Google Scholar 

  47. Zen K, Liu Y, McCall IC, Wu T, Lee W, Babbin BA et al. Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell 2005; 16: 2694–2703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Shaw CA, Holland PC, Sinnreich M, Allen C, Sollerbrant K, Karpati G et al. Isoform-specific expression of the Coxsackie and adenovirus receptor (CAR) in neuromuscular junction and cardiac intercalated discs. BMC Cell Biol 2004; 5: 42.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Noutsias M, Fechner H, de Jonge H, Wang X, Dekkers D, Houtsmuller AB et al. Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation 2001; 104: 275–280.

    Article  CAS  PubMed  Google Scholar 

  50. Fechner H, Noutsias M, Tschoepe C, Hinze K, Wang X, Escher F et al. Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: identification of a cell-to-cell contact-dependent regulatory mechanism. Circulation 2003; 107: 876–882.

    Article  PubMed  Google Scholar 

  51. Chen JW, Zhou B, Yu QC, Shin SJ, Jiao K, Schneider MD et al. Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves. Circ Res 2006; 98: 923–930.

    Article  CAS  PubMed  Google Scholar 

  52. Dorner AA, Wegmann F, Butz S, Wolburg-Buchholz K, Wolburg H, Mack A et al. Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. J Cell Sci 2005; 118: 3509–3521.

    Article  CAS  PubMed  Google Scholar 

  53. Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H et al. Trans-complementation of vector replication versus Coxsackie–adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Therapy 2000; 7: 1954–1968.

    Article  CAS  PubMed  Google Scholar 

  54. Marienfeld U, Haack A, Thalheimer P, Schneider-Rasp S, Brackmann HH, Poller W . ‘Autoreplication’ of the vector genome in recombinant adenoviral vectors with different E1 region deletions and transgenes. Gene Therapy 1999; 6: 1101–1113.

    Article  CAS  PubMed  Google Scholar 

  55. Sipo I, Hurtado Pico A, Wang X, Eberle J, Petersen I, Weger S et al. An improved Tet-On regulatable FasL-adenovirus vector system for lung cancer therapy. J Mol Med 2006; 84: 215–225.

    Article  CAS  PubMed  Google Scholar 

  56. Sollerbrant K, Raschperger E, Mirza M, Engstrom U, Philipson L, Ljungdahl PO et al. The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX). J Biol Chem 2003; 278: 7439–7444.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft through grants SFB-TR-19/C5 to WP and HF and SFB-TR-19/C1 to JK. We thank Denise Werk for generating the shRNA expression cassette against hCAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Poller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fechner, H., Pinkert, S., Wang, X. et al. Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor. Gene Ther 14, 960–971 (2007). https://doi.org/10.1038/sj.gt.3302948

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302948

Keywords

This article is cited by

Search

Quick links