Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics

Abstract

Lentiviral vectors have emerged as promising tools for both gene therapy and immunotherapy purposes. They exhibit several advantages over other viral systems in that they are less immunogenic and are capable of transducing a wide range of different cell types, including dendritic cells (DC). DC transduced ex vivo with a whole range of different (tumor) antigens were capable of inducing strong antigen-specific T-cell responses, both in vitro and in vivo. Recently, the administration of lentiviral vectors in vivo has gained substantial interest as an alternative method for antigen-specific immunization. This method offers a number of advantages over DC vaccines as the same lentivirus can in principle be used for all patients resulting in a significantly reduced cost and requirement for considerably less expertise for the generation and administration of lentiviral vaccines. By selectively targeting lentiviral vectors to, or restricting transgene expression in certain cell types, selectivity, safety and efficacy can be further improved. This review will focus on the use of direct administration of lentiviral vectors encoding tumor-associated antigens (TAA) for the induction of tumor-specific immune responses in vivo, with a special focus on problems related to the generation of large amounts of highly purified virus and specific targeting of antigen-presenting cells (APC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ehrlich P . Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneesk 1909; 5: 273–290.

    Google Scholar 

  2. Burnet FM . The concept of immunological surveillance. Prog Exp Tumor Res 1970; 13: 1–27.

    Article  CAS  PubMed  Google Scholar 

  3. Boon T, van der Bruggen P . Human tumor antigens recognized by T lymphocytes. J Exp Med 1996; 183: 725–729.

    Article  CAS  PubMed  Google Scholar 

  4. Van den Eynde BJ, van der Bruggen P . T cell defined tumor antigens. Curr Opin Immunol 1997; 9: 684–693.

    Article  CAS  PubMed  Google Scholar 

  5. Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N et al. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 2005; 201: 249–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang Y, Huang CT, Huang X, Pardoll DM . Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 2004; 5: 508–515.

    Article  CAS  PubMed  Google Scholar 

  7. Lang KS, Recher M, Junt T, Navarini AA, Harris NL, Freigang S et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 2005; 11: 138–145.

    Article  CAS  PubMed  Google Scholar 

  8. Fehervari Z, Sakaguchi S . CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Meirvenne S, Dullaers M, Heirman C, Straetman L, Michiels A, Thielemans K . In vivo depletion of CD4+CD25+ regulatory T cells enhances the antigen-specific primary and memory CTL response elicited by mature mRNA-electroporated dendritic cells. Mol Ther 2005; 12: 922–932.

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu J, Yamazaki S, Sakaguchi S . Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163: 5211–5218.

    CAS  PubMed  Google Scholar 

  11. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  12. Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 2005; 201: 1435–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A . Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6: 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warger T, Osterloh P, Rechtsteiner G, Fassbender M, Heib V, Schmid B et al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 2006; 108: 544–550.

    Article  CAS  PubMed  Google Scholar 

  15. Mann R, Mulligan RC, Baltimore D . Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 1983; 33: 153–159.

    Article  CAS  PubMed  Google Scholar 

  16. Vogt VM, Simon MN . Mass determination of rous sarcoma virus virions by scanning transmission electron microscopy. J Virol 1999; 73: 7050–7055.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Andreadis ST, Brott D, Fuller AO, Palsson BO . Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5*5 to 7*5 hours. J Virol 1997; 71: 7541–7548.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Le Doux JM, Davis HE, Morgan JR, Yarmush ML . Kinetics of retrovirus production and decay. Biotechnol Bioeng 1999; 63: 654–662.

    Article  CAS  PubMed  Google Scholar 

  19. Roe T, Reynolds TC, Yu G, Brown PO . Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12: 2099–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  21. Luciw P . Human Immunodeficiency Viruses and their Replication. Lippincot-Raven Publishers: Philadephia, 1996.

    Google Scholar 

  22. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68: 510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gallay P, Swingler S, Aiken C, Trono D . HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 1995; 80: 379–388.

    Article  CAS  PubMed  Google Scholar 

  25. Gallay P, Swingler S, Song J, Bushman F, Trono D . HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 1995; 83: 569–576.

    Article  CAS  PubMed  Google Scholar 

  26. Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 1993; 365: 666–669.

    Article  CAS  PubMed  Google Scholar 

  27. Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 1994; 91: 7311–7315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  29. Korin YD, Zack JA . Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 1998; 72: 3161–3168.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F . Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000; 96: 1327–1333.

    CAS  PubMed  Google Scholar 

  32. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ginn SL, Fleming J, Rowe PB, Alexander IE . Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner. Hum Gene Ther 2003; 14: 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  36. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000; 96: 4103–4110.

    CAS  PubMed  Google Scholar 

  37. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanders DA . No false start for novel pseudotyped vectors. Curr Opin Biotechnol 2002; 13: 437–442.

    Article  CAS  PubMed  Google Scholar 

  39. Schlegel A, Schaller J, Jentsch P, Kempf C . Semliki Forest virus core protein fragmentation: its possible role in nucleocapsid disassembly. Biosci Rep 1993; 13: 333–347.

    Article  CAS  PubMed  Google Scholar 

  40. Coil DA, Miller AD . Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 2004; 78: 10920–10926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK . Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90: 8033–8037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ory DS, Neugeboren BA, Mulligan RC . A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci USA 1996; 93: 11400–11406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000; 2: 218–222.

    Article  CAS  PubMed  Google Scholar 

  44. Croyle MA, Callahan SM, Auricchio A, Schumer G, Linse KD, Wilson JM et al. PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. J Virol 2004; 78: 912–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reiser J, Lai Z, Zhang XY, Brady RO . Development of multigene and regulated lentivirus vectors. J Virol 2000; 74: 10589–10599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kafri T, van Praag H, Gage FH, Verma IM . Lentiviral vectors: regulated gene expression. Mol Ther 2000; 1: 516–521.

    Article  CAS  PubMed  Google Scholar 

  47. Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 2002; 5: 252–261.

    Article  CAS  PubMed  Google Scholar 

  48. Johansen J, Rosenblad C, Andsberg K, Moller A, Lundberg C, Bjorlund A et al. Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Therapy 2002; 9: 1291–1301.

    Article  CAS  PubMed  Google Scholar 

  49. Georgievska B, Jakobsson J, Persson E, Ericson C, Kirik D, Lundberg C . Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 2004; 15: 934–944.

    Article  CAS  PubMed  Google Scholar 

  50. Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J et al. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 2001; 12: 981–997.

    Article  CAS  PubMed  Google Scholar 

  51. Moreau-Gaudry F, Xia P, Jiang G, Perelman NP, Bauer G, Ellis J et al. High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 2001; 98: 2664–2672.

    Article  CAS  PubMed  Google Scholar 

  52. De Palma M, Venneri MA, Naldini L . In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14: 1193–1206.

    Article  CAS  PubMed  Google Scholar 

  53. Lai Z, Brady RO . Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector. J Neurosci Res 2002; 67: 363–371.

    Article  CAS  PubMed  Google Scholar 

  54. Miyoshi H, Takahashi M, Gage FH, Verma IM . Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997; 94: 10319–10323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L . Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 2002; 13: 243–260.

    Article  CAS  PubMed  Google Scholar 

  56. Oertel M, Rosencrantz R, Chen YQ, Thota PN, Sandhu JS, Dabeva MD et al. Repopulation of rat liver by fetal hepatoblasts and adult hepatocytes transduced ex vivo with lentiviral vectors. Hepatology 2003; 37: 994–1005.

    Article  PubMed  Google Scholar 

  57. Uch R, Gerolami R, Faivre J, Hardwigsen J, Mathieu S, Mannoni P et al. Hepatoma cell-specific ganciclovir-mediated toxicity of a lentivirally transduced HSV-TkEGFP fusion protein gene placed under the control of rat alpha-fetoprotein gene regulatory sequences. Cancer Gene Ther 2003; 10: 689–695.

    Article  CAS  PubMed  Google Scholar 

  58. Yu D, Chen D, Chiu C, Razmazma B, Chow YH, Pang S . Prostate-specific targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther 2001; 8: 628–635.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng JY, Chen D, Chan J, Yu D, Ko E, Pang S . Regression of prostate cancer xenografts by a lentiviral vector specifically expressing diphtheria toxin A. Cancer Gene Ther 2003; 10: 764–770.

    Article  CAS  PubMed  Google Scholar 

  60. Cui Y, Golob J, Kelleher E, Ye Z, Pardoll D, Cheng L . Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 2002; 99: 399–408.

    Article  CAS  PubMed  Google Scholar 

  61. Sinn PL, Sauter SL, McCray Jr PB . Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Therapy 2005; 12: 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  62. Warnock J, Price T, Slade A, Al-Rubeai M . Use of a fluidized-bed bioreactor for the production of retroviral vectors for gene therapy. BioProcessing 2004; 3: 41–45.

    Google Scholar 

  63. Wu SC, Huang GY, Liu JH . Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol Prog 2002; 18: 617–622.

    Article  CAS  PubMed  Google Scholar 

  64. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM . A packaging cell line for lentivirus vectors. J Virol 1999; 73: 576–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Klages N, Zufferey R, Trono D . A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2000; 2: 170–176.

    Article  CAS  PubMed  Google Scholar 

  66. Xu K, Ma H, McCown TJ, Verma IM, Kafri T . Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther 2001; 3: 97–104.

    Article  CAS  PubMed  Google Scholar 

  67. Kuate S, Wagner R, Uberla K . Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors. J Gene Med 2002; 4: 347–355.

    Article  CAS  PubMed  Google Scholar 

  68. Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M . Continuous high-titer HIV-1 vector production. Nat Biotechnol 2003; 21: 569–572.

    Article  CAS  PubMed  Google Scholar 

  69. Strang BL, Takeuchi Y, Relander T, Richter J, Bailey R, Sanders DA et al. Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J Virol 2005; 79: 1765–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bartz SR, Rogel ME, Emerman M . Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 1996; 70: 2324–2331.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB . Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 1995; 268: 429–431.

    Article  CAS  PubMed  Google Scholar 

  72. Miyazaki Y, Takamatsu T, Nosaka T, Fujita S, Martin TE, Hatanaka M . The cytotoxicity of human immunodeficiency virus type 1 Rev: implications for its interaction with the nucleolar protein B23. Exp Cell Res 1995; 219: 93–101.

    Article  CAS  PubMed  Google Scholar 

  73. Konvalinka J, Litterst MA, Welker R, Kottler H, Rippmann F, Heuser AM et al. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. J Virol 1995; 69: 7180–7186.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar M, Bradow BP, Zimmerberg J . Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 2003; 14: 67–77.

    Article  CAS  PubMed  Google Scholar 

  75. Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW . Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2004; 122: 131–139.

    Article  CAS  PubMed  Google Scholar 

  76. Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ et al. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 2003; 12: 221–228.

    Article  CAS  PubMed  Google Scholar 

  77. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100: 813–822.

    Article  CAS  PubMed  Google Scholar 

  78. Pham L, Ye H, Cosset FL, Russell SJ, Peng KW . Concentration of viral vectors by co-precipitation with calcium phosphate. J Gene Med 2001; 3: 188–194.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang B, Xia HQ, Cleghorn G, Gobe G, West M, Wei MQ . A highly efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors. Gene Therapy 2001; 8: 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  80. Baekelandt V, Eggermont K, Michiels M, Nuttin B, Debyser Z . Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Therapy 2003; 10: 1933–1940.

    Article  CAS  PubMed  Google Scholar 

  81. Scherr M, Battmer K, Eder M, Schule S, Hohenberg H, Ganser A et al. Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Therapy 2002; 9: 1708–1714.

    Article  CAS  PubMed  Google Scholar 

  82. Yamada K, McCarty DM, Madden VJ, Walsh CE . Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 2003; 34: 1074–1078, 1080.

    Article  CAS  PubMed  Google Scholar 

  83. Schauber CA, Tuerk MJ, Pacheco CD, Escarpe PA, Veres G . Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Therapy 2004; 11: 266–275.

    Article  CAS  PubMed  Google Scholar 

  84. Scherr M, Battmer K, Blomer U, Ganser A, Grez M . Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 2001; 31: 520, 522, 524, passim.

    Article  CAS  PubMed  Google Scholar 

  85. Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K . Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Therapy 2002; 9: 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  86. Lizee G, Aerts JL, Gonzales MI, Chinnasamy N, Morgan RA, Topalian SL . Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 2003; 14: 497–507.

    Article  CAS  PubMed  Google Scholar 

  87. Logan AC, Nightingale SJ, Haas DL, Cho GJ, Pepper KA, Kohn DB . Factors influencing the titer and infectivity of lentiviral vectors. Hum Gene Ther 2004; 15: 976–988.

    Article  CAS  PubMed  Google Scholar 

  88. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 2003; 5: 654–667.

    Article  CAS  PubMed  Google Scholar 

  89. Unutmaz D, KewalRamani VN, Marmon S, Littman DR . Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 1999; 189: 1735–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 2000; 1: 171–179.

    Article  CAS  PubMed  Google Scholar 

  91. Dyall J, Latouche JB, Schnell S, Sadelain M . Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001; 97: 114–121.

    Article  CAS  PubMed  Google Scholar 

  92. Firat H, Zennou V, Garcia-Pons F, Ginhoux F, Cochet M, Danos O et al. Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J Gene Med 2002; 4: 38–45.

    Article  PubMed  Google Scholar 

  93. Lizee G, Gonzales MI, Topalian SL . Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther 2004; 15: 393–404.

    Article  CAS  PubMed  Google Scholar 

  94. Oki M, Ando K, Hagihara M, Miyatake H, Shimizu T, Miyoshi H et al. Efficient lentiviral transduction of human cord blood CD34(+) cells followed by their expansion and differentiation into dendritic cells. Exp Hematol 2001; 29: 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  95. Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D . High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 2000; 96: 3392–3398.

    CAS  PubMed  Google Scholar 

  96. Sumimoto H, Tsuji T, Miyoshi H, Hagihara M, Takada-Yamazaki R, Okamoto S et al. Rapid and efficient generation of lentivirally gene-modified dendritic cells from DC progenitors with bone marrow stromal cells. J Immunol Methods 2002; 271: 153–165.

    Article  CAS  PubMed  Google Scholar 

  97. Metharom P, Ellem KA, Schmidt C, Wei MQ . Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 2001; 12: 2203–2213.

    Article  CAS  PubMed  Google Scholar 

  98. Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F et al. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 2003; 111: 1673–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zarei S, Leuba F, Arrighi JF, Hauser C, Piguet V . Transduction of dendritic cells by antigen-encoding lentiviral vectors permits antigen processing and MHC class I-dependent presentation. J Allergy Clin Immunol 2002; 109: 988–994.

    Article  CAS  PubMed  Google Scholar 

  100. Haas DL, Case SS, Crooks GM, Kohn DB . Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther 2000; 2: 71–80.

    Article  CAS  PubMed  Google Scholar 

  101. Dullaers M, Breckpot K, Van Meirvenne S, Bonehill A, Tuyaerts S, Michiels A et al. Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther 2004; 10: 768–779.

    Article  CAS  PubMed  Google Scholar 

  102. Breckpot K, Heirman C, De Greef C, van der Bruggen P, Thielemans K . Identification of new antigenic peptide presented by HLA-Cw7 and encoded by several MAGE genes using dendritic cells transduced with lentiviruses. J Immunol 2004; 172: 2232–2237.

    Article  CAS  PubMed  Google Scholar 

  103. He Y, Zhang J, Mi Z, Robbins P, Falo Jr LD . Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 2005; 174: 3808–3817.

    Article  CAS  PubMed  Google Scholar 

  104. Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, Aerts JL et al. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Therapy 2006; 13: 630–640.

    Article  CAS  PubMed  Google Scholar 

  105. Palmowski MJ, Lopes L, Ikeda Y, Salio M, Cerundolo V, Collins MK . Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J Immunol 2004; 172: 1582–1587.

    Article  CAS  PubMed  Google Scholar 

  106. He Y, Zhang J, Donahue C, Falo Jr LD . Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 2006; 24: 643–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim JH, Majumder N, Lin H, Watkins S, Falo Jr LD, You Z . Induction of therapeutic antitumor immunity by in vivo administration of a lentiviral vaccine. Hum Gene Ther 2005; 16: 1255–1266.

    Article  CAS  PubMed  Google Scholar 

  108. Chapatte L, Colombetti S, Cerottini JC, Levy F . Efficient induction of tumor antigen-specific CD8+ memory T cells by recombinant lentivectors. Cancer Res 2006; 66: 1155–1160.

    Article  CAS  PubMed  Google Scholar 

  109. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 2005; 175: 6169–6176.

    Article  CAS  PubMed  Google Scholar 

  110. Rowe HM, Lopes L, Ikeda Y, Bailey R, Barde I, Zenke M et al. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther 2006; 13: 310–319.

    Article  CAS  PubMed  Google Scholar 

  111. McMichael AJ, Phillips RE . Escape of human immunodeficiency virus from immune control. Annu Rev Immunol 1997; 15: 271–296.

    Article  CAS  PubMed  Google Scholar 

  112. Liu SL, Schacker T, Musey L, Shriner D, McElrath MJ, Corey L et al. Divergent patterns of progression to AIDS after infection from the same source: human immunodeficiency virus type 1 evolution and antiviral responses. J Virol 1997; 71: 4284–4295.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cao Y, Qin L, Zhang L, Safrit J, Ho DD . Characterization of long-term survivors of human immunodeficiency virus type 1 infection. Immunol Lett 1996; 51: 7–13.

    Article  CAS  PubMed  Google Scholar 

  114. Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 2004; 78: 5223–5232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 2005; 115: 3265–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194: 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC et al. Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 2005; 105: 3824–3832.

    Article  CAS  PubMed  Google Scholar 

  118. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD . How cells respond to interferons. Annu Rev Biochem 1998; 67: 227–264.

    Article  CAS  PubMed  Google Scholar 

  119. Taylor SS, Haste NM, Ghosh G . PKR and eIF2alpha: integration of kinase dimerization, activation, and substrate docking. Cell 2005; 122: 823–825.

    Article  CAS  PubMed  Google Scholar 

  120. Kawai T, Akira S . Innate immune recognition of viral infection. Nat Immunol 2006; 7: 131–137.

    Article  CAS  PubMed  Google Scholar 

  121. Kapsenberg ML . Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003; 3: 984–993.

    Article  CAS  PubMed  Google Scholar 

  122. Brown BD, Sitia G, Annoni A, Hauben E, Sergi Sergi L, Zingale A et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 2006 [Epub ahead of print].

  123. Zhang H, Dornadula G, Pomerantz RJ . Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenviroments: an important stage for viral infection of nondividing cells. J Virol 1996; 70: 2809–2824.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006; 7: 40–48.

    Article  CAS  PubMed  Google Scholar 

  125. Stetson DB, Medzhitov R . Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24: 93–103.

    Article  CAS  PubMed  Google Scholar 

  126. Pichlmair A, Diebold SS, Gschmeissner S, Takeuchi Y, Ikeda Y, Collins MK et al. Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via toll-like receptor 9. J Virol 2007; 81: 539–547.

    Article  CAS  PubMed  Google Scholar 

  127. Buller RM, Holmes KL, Hugin A, Frederickson TN, Morse III HC . Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature 1987; 328: 77–79.

    Article  CAS  PubMed  Google Scholar 

  128. Shedlock DJ, Shen H . Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003; 300: 337–339.

    Article  CAS  PubMed  Google Scholar 

  129. Sun JC, Bevan MJ . Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003; 300: 339–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    Article  CAS  PubMed  Google Scholar 

  131. Marzo AL, Vezys V, Klonowski KD, Lee SJ, Muralimohan G, Moore M et al. Fully functional memory CD8 T cells in the absence of CD4 T cells. J Immunol 2004; 173: 969–975.

    Article  CAS  PubMed  Google Scholar 

  132. Noti JD, Reinemann BC, Petrus MN . Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription. Mol Cell Biol 1996; 16: 2940–2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 2001; 194: 1823–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Takahara K, Omatsu Y, Yashima Y, Maeda Y, Tanaka S, Iyoda T et al. Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 2002; 14: 433–444.

    Article  CAS  PubMed  Google Scholar 

  135. Chandrashekran A, Gordon MY, Casimir C . Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology. Blood 2004; 104: 2697–2703.

    Article  CAS  PubMed  Google Scholar 

  136. Chandrashekran A, Gordon MY, Darling D, Farzaneh F, Casimir C . Growth factor displayed on the surface of retroviral particles without manipulation of envelope proteins is biologically active and can enhance transduction. J Gene Med 2004; 6: 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  137. Yang L, Bailey L, Baltimore D, Wang P . Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci USA 2006; 103: 11479–11484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM . Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196: 1627–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363: 446–448.

    Article  CAS  PubMed  Google Scholar 

  141. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 2005; 433: 887–892.

    Article  CAS  PubMed  Google Scholar 

  142. Segall H, Sutton RE . Detection of replication-competent lentiviral particles. Methods Mol Biol 2003; 229: 87–94.

    CAS  PubMed  Google Scholar 

  143. Escarpe P, Zayek N, Chin P, Borellini F, Zufferey R, Veres G et al. Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 2003; 8: 332–341.

    Article  CAS  PubMed  Google Scholar 

  144. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  145. Dave UP, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

    Article  PubMed  Google Scholar 

  146. Trono D . Virology. Picking the right spot. Science 2003; 300: 1670–1671.

    Article  CAS  PubMed  Google Scholar 

  147. Sadelain M . Insertional oncogenesis in gene therapy: how much of a risk? Gene Therapy 2004; 11: 569–573.

    Article  CAS  PubMed  Google Scholar 

  148. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F . HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    Article  CAS  PubMed  Google Scholar 

  149. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  PubMed  Google Scholar 

  150. Bushman F . Targeting retroviral integration? Mol Ther 2002; 6: 570–571.

    Article  CAS  PubMed  Google Scholar 

  151. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  PubMed  Google Scholar 

  152. Groth AC, Olivares EC, Thyagarajan B, Calos MP . A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 2000; 97: 5995–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M . In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther 2005; 11: 399–408.

    Article  CAS  PubMed  Google Scholar 

  154. Engelman A . In vivo analysis of retroviral integrase structure and function. Adv Virus Res 1999; 52: 411–426.

    Article  CAS  PubMed  Google Scholar 

  155. Vargas Jr J, Gusella GL, Najfeld V, Klotman ME, Cara A . Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther 2004; 15: 361–372.

    Article  CAS  PubMed  Google Scholar 

  156. Saenz DT, Loewen N, Peretz M, Whitwam T, Barraza R, Howell KG et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol 2004; 78: 2906–2920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yoshimitsu M, Higuchi K, Dawood F, Rasaiah VI, Ayach B, Chen M et al. Correction of cardiac abnormalities in fabry mice by direct intraventricular injection of a recombinant lentiviral vector that engineers expression of alpha-galactosidase A. Circ J 2006; 70: 1503–1508.

    Article  CAS  PubMed  Google Scholar 

  158. Carbonaro DA, Jin X, Petersen D, Wang X, Dorey F, Kil KS et al. In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: a novel form of enzyme replacement therapy for ADA deficiency. Mol Ther 2006; 13: 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  159. Di Domenico C, Di Napoli D, Gonzalez YRE, Lombardo A, Naldini L, Di Natale P . Limited transgene immune response and long-term expression of human alpha-L-iduronidase in young adult mice with mucopolysaccharidosis type I by liver-directed gene therapy. Hum Gene Ther 2006; 17: 1112–1121.

    Article  CAS  PubMed  Google Scholar 

  160. Vercammen L, Van der Perren A, Vaudano E, Gijsbers R, Debyser Z, Van den Haute C et al. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease. Mol Ther 2006; 14: 716–723.

    Article  CAS  PubMed  Google Scholar 

  161. Wazen RM, Moffatt P, Zalzal SF, Daniel NG, Westerman KA, Nanci A . Local gene transfer to calcified tissue cells using prolonged infusion of a lentiviral vector. Gene Therapy 2006; 13: 1595–1602.

    Article  CAS  PubMed  Google Scholar 

  162. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  163. Koya RC, Kasahara N, Favaro PM, Lau R, Ta HQ, Weber JS et al. Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J Immunother 2003; 26: 451–460.

    Article  CAS  PubMed  Google Scholar 

  164. Kobayashi M, Takaori-Kondo A, Fukunaga K, Miyoshi H, Uchiyama T . Lentiviral gp34/OX40L gene transfer into dendritic cells facilitates alloreactive CD4+ T-cell response in vitro. Int J Hematol 2004; 79: 377–383.

    Article  CAS  PubMed  Google Scholar 

  165. Rohrlich PS, Cardinaud S, Lule J, Montero-Julian FA, Prodhomme V, Firat H et al. Use of a lentiviral vector encoding a HCMV-chimeric IE1-pp65 protein for epitope identification in HLA-Transgenic mice and for ex vivo stimulation and expansion of CD8(+) cytotoxic T cells from human peripheral blood cells. Hum Immunol 2004; 65: 514–522.

    Article  CAS  PubMed  Google Scholar 

  166. Delenda C . Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 2004; 6 (Suppl 1): S125–S138.

    Article  CAS  PubMed  Google Scholar 

  167. Poeschla EM, Wong-Staal F, Looney DJ . Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998; 4: 354–357.

    Article  CAS  PubMed  Google Scholar 

  168. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M . Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci USA 1996; 93: 15266–15271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J . High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 1998; 72: 8873–8883.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA et al. Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 2004; 9: 101–111.

    Article  CAS  PubMed  Google Scholar 

  171. Beyer WR, Westphal M, Ostertag W, von Laer D . Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 2002; 76: 1488–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Christodoulopoulos I, Cannon PM . Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J Virol 2001; 75: 4129–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang J, Randall G, Higginbottom A, Monk P, Rice CM, McKeating JA . CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol 2004; 78: 1448–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Flint M, Logvinoff C, Rice CM, McKeating JA . Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. J Virol 2004; 78: 6875–6882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kowolik CM, Yee JK . Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein. Mol Ther 2002; 5: 762–769.

    Article  CAS  PubMed  Google Scholar 

  176. Marzi A, Gramberg T, Simmons G, Moller P, Rennekamp AJ, Krumbiegel M et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 2004; 78: 12090–12095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kobinger GP, Weiner DJ, Yu QC, Wilson JM . Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 2001; 19: 225–230.

    Article  CAS  PubMed  Google Scholar 

  178. Liu SL, Halbert CL, Miller AD . Jaagsiekte sheep retrovirus envelope efficiently pseudotypes human immunodeficiency virus type 1-based lentiviral vectors. J Virol 2004; 78: 2642–2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sinn PL, Penisten AK, Burnight ER, Hickey MA, Williams G, McCoy DM et al. Gene transfer to respiratory epithelia with lentivirus pseudotyped with Jaagsiekte sheep retrovirus envelope glycoprotein. Hum Gene Ther 2005; 16: 479–488.

    Article  CAS  PubMed  Google Scholar 

  180. Stitz J, Buchholz CJ, Engelstadter M, Uckert W, Bloemer U, Schmitt I et al. Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 2000; 273: 16–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Breckpot or J L Aerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breckpot, K., Aerts, J. & Thielemans, K. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther 14, 847–862 (2007). https://doi.org/10.1038/sj.gt.3302947

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302947

This article is cited by

Search

Quick links