Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The CD20/αCD20 ‘suicide’ system: novel vectors with improved safety and expression profiles and efficient elimination of CD20-transgenic T cells

Abstract

Adoptive transfer of T lymphocytes is an attractive strategy for many experimental treatment strategies for cancer. Unfortunately, manipulated T cells could be responsible for serious adverse events. Retroviral CD20-transduced T cells may be able to control these unwanted effects. CD20-positive cells are sensitive to rituximab (RTX), a monoclonal antibody specific for CD20. This permits their selective elimination in vivo in case of adverse events. To this end, a system is required that permits efficient and safe transduction of donor T cells and effective elimination of CD20-positive T cells. We constructed different CD20-encoding retroviral vectors and investigated the impact of inclusion of the woodchuck post-transcriptional regulatory element (WPRE) and the chicken hypersensitivity site 4 insulator elements on the levels, homogeneity and stability of CD20 expression. Importantly, inclusion of either WPRE or insulator elements in the retroviral vector resulted in a dramatic improvement in the stability of CD20 expression. The insulator element also led to a much more homogeneous level of CD20 expression. We also show the efficient elimination of the CD20-transgenic T cells via RTX by different effector mechanisms. In conclusion, we have constructed CD20-encoding retroviral vectors with improved efficiency and safety profiles, which can be used as a suicide strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  2. Tiberghien P, Reynolds CW, Keller J, Spence S, Deschaseaux M, Certoux JM et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation? Blood 1994; 84: 1333–1341.

    CAS  PubMed  Google Scholar 

  3. Introna M, Barbui AM, Bambacioni F, Casati C, Gaipa G, Borleri G et al. Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 2000; 11: 611–620.

    Article  CAS  PubMed  Google Scholar 

  4. Serafini M, Manganini M, Borleri G, Bonamino M, Imberti L, Biondi A et al. Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease. Hum Gene Ther 2004; 15: 63–76.

    Article  CAS  PubMed  Google Scholar 

  5. Cartron G, Watier H, Golay J, Solal-Celigny P . From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004; 104: 2635–2642.

    Article  CAS  PubMed  Google Scholar 

  6. Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I . Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 2000; 204: 55–63.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson P, Glennie M . The mechanisms of action of rituximab in the elimination of tumor cells. Semin Oncol 2003; 30: 3–8.

    Article  CAS  PubMed  Google Scholar 

  8. Smith MR . Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 2003; 22: 7359–7368.

    Article  CAS  PubMed  Google Scholar 

  9. Frank O, Rudolph C, Heberlein C, von NN, Schrock E, Schambach A et al. Tumor cells escape suicide gene therapy by genetic and epigenetic instability. Blood 2004; 104: 3543–3549.

    Article  CAS  PubMed  Google Scholar 

  10. Hacein-Bey-Abina S, von KC, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  11. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98: 3383–3389.

    Article  CAS  PubMed  Google Scholar 

  12. Donello JE, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 1998; 72: 5085–5092.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Johansen J, Tornoe J, Moller A, Johansen TE . Increased in vitro and in vivo transgene expression levels mediated through cis-acting elements. J Gene Med 2003; 5: 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  14. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 2000; 97: 9150–9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Emery DW, Yannaki E, Tubb J, Nishino T, Li Q, Stamatoyannopoulos G . Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo. Blood 2002; 100: 2012–2019.

    Article  CAS  PubMed  Google Scholar 

  17. Rivella S, Callegari JA, May C, Tan CW, Sadelain M . The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 2000; 74: 4679–4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kozak M . The scanning model for translation: an update. J Cell Biol 1989; 108: 229–241.

    Article  CAS  PubMed  Google Scholar 

  19. Ramezani A, Hawley TS, Hawley RG . Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003; 101: 4717–4724.

    Article  CAS  PubMed  Google Scholar 

  20. Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW . Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther 2002; 5: 589–598.

    Article  CAS  PubMed  Google Scholar 

  21. Kustikova OS, Wahlers A, Kuhlcke K, Stahle B, Zander AR, Baum C et al. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 2003; 102: 3934–3937.

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von KC, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  23. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99: 754–758.

    Article  CAS  PubMed  Google Scholar 

  24. Clynes RA, Towers TL, Presta LG, Ravetch JV . Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6: 443–446.

    Article  CAS  PubMed  Google Scholar 

  25. Pfeiffer M, Stanojevic S, Feuchtinger T, Greil J, Handgretinger R, Barbin K et al. Rituximab mediates in vitro antileukemic activity in pediatric patients after allogeneic transplantation. Bone Marrow Transplant 2005; 36: 91–97.

    Article  CAS  PubMed  Google Scholar 

  26. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy 2005; 12: 3–4.

    Article  CAS  PubMed  Google Scholar 

  27. Sirma H, Giannini C, Poussin K, Paterlini P, Kremsdorf D, Brechot C . Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx. Oncogene 1999; 18: 4848–4859.

    Article  CAS  PubMed  Google Scholar 

  28. Poussin K, Dienes H, Sirma H, Urban S, Beaugrand M, Franco D et al. Expression of mutated hepatitis B virus X genes in human hepatocellular carcinomas. Int J Cancer 1999; 80: 497–505.

    Article  CAS  PubMed  Google Scholar 

  29. Engels B, Cam H, Schuler T, Indraccolo S, Gladow M, Baum C et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 2003; 14: 1155–1168.

    Article  CAS  PubMed  Google Scholar 

  30. Serafini M, Bonamino M, Golay J, Introna M . Elongation factor 1 (EF1alpha) promoter in a lentiviral backbone improves expression of the CD20 suicide gene in primary T lymphocytes allowing efficient rituximab-mediated lysis. Haematologica 2004; 89: 86–95.

    CAS  PubMed  Google Scholar 

  31. Kohn DB, Sadelain M, Glorioso JC . Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 2003; 3: 477–488.

    Article  CAS  PubMed  Google Scholar 

  32. Baum C, von KC, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  PubMed  Google Scholar 

  33. Kohn DB, Sadelain M, Dunbar C, Bodine D, Kiem HP, Candotti F et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 2003; 8: 180–187.

    Article  CAS  PubMed  Google Scholar 

  34. Walters MC, Fiering S, Bouhassira EE, Scalzo D, Goeke S, Magis W et al. The chicken beta-globin 5′HS4 boundary element blocks enhancer-mediated suppression of silencing. Mol Cell Biol 1999; 19: 3714–3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C . Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2: 435–445.

    Article  CAS  PubMed  Google Scholar 

  36. Auten J, Agarwal M, Chen J, Sutton R, Plavec I . Effect of scaffold attachment region on transgene expression in retrovirus vector-transduced primary T cells and macrophages. Hum Gene Ther 1999; 10: 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  37. Kessels HW, van dB, Spits H, Hooijberg E, Schumacher TN . Changing T cell specificity by retroviral T cell receptor display. Proc Natl Acad Sci USA 2000; 97: 14578–14583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weijtens M, van SA, Hagenbeek A, Braakman E, Martens A . Reduced graft-versus-host disease-inducing capacity of T cells after activation, culturing, and magnetic cell sorting selection in an allogeneic bone marrow transplantation model in rats. Hum Gene Ther 2002; 13: 187–198.

    Article  CAS  PubMed  Google Scholar 

  39. Jedema I, van der Werff NM, Barge RM, Willemze R, Falkenburg JH . New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 2004; 103: 2677–2682.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Ton NM Schumacher (Netherlands Cancer Institute, Amsterdam, The Netherlands) for providing the pMX retroviral vector; Dr Gary Nolan (Stanford University, Stanford, CA) for the amphotrophic packaging cell line Phoenix; Dr Christopher Baum for the WPRE element and Dr Gary Felsenfeld for insulator elements. The work was supported by EC Grant QLK3 CT 2001-01265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S B Ebeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Meerten, T., Claessen, MJ., Hagenbeek, A. et al. The CD20/αCD20 ‘suicide’ system: novel vectors with improved safety and expression profiles and efficient elimination of CD20-transgenic T cells. Gene Ther 13, 789–797 (2006). https://doi.org/10.1038/sj.gt.3302705

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302705

Keywords

This article is cited by

Search

Quick links