Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: gene transfer into embryonic stem cells

Abstract

With the isolation of human embryonic stem cells (hESCs) in 1998 came the realization of a long-sought aspiration for an unlimited source of human tissue. The difficulty of differentiating ESCs to pure, clinically exploitable cell populations to treat genetic and degenerative diseases is being solved in part with the help of genetically modified cell lines. With progress in genome editing and somatic cell nuclear transfer, it is theoretically possible to obtain genetically repaired isogenic cells. Moreover, the prospect of being able to select, isolate and expand a single cell to a vast population of cells could achieve a unique level of quality control, until now unattainable in the field of gene therapy. Most of the tools necessary to develop these strategies already exist in the mouse ESC system. We review here the advances accomplished in those fields and present some possible applications to hESC research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chad A, Cowan PD, Klimanskaya I, McMahon J, Atienza J, Witmyer J et al. Derivation of embryonic stem-cell lines from human blastocysts. N Eng J Med 2004; 350: 1353–1356.

    Article  Google Scholar 

  2. ISSCR. List of human embryonic stem cell lines. http://www.isscr.org/science/sclines.htm.

  3. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N . et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101: 12543–12548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE . Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23: 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  5. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 2005; 23: 772–780.

    Article  CAS  PubMed  Google Scholar 

  6. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG . Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 2005; 106: 1601–1603.

    Article  CAS  PubMed  Google Scholar 

  7. Zambidis ET, Peault B, Park TS, Bunz F, Civin CI . Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 2005; 106: 860–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz RE, Linehan JL, Painschab MS, Hu WS, Verfaillie CM, Kaufman DS . Defined conditions for development of functional hepatic cells from human embryonic stem cells. Stem Cells Dev 2005; 14: 643–655.

    Article  CAS  PubMed  Google Scholar 

  9. Bielby RC, Boccaccini AR, Polak JM, Buttery LD . In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 2004; 10: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  10. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004; 13: 727–739.

    Article  CAS  PubMed  Google Scholar 

  11. Heng BC, Haider H, Sim EK, Cao T, Ng SC . Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res 2004; 62: 34–42.

    Article  CAS  PubMed  Google Scholar 

  12. Zwaka TP, Thomson JA . Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21: 319–321.

    Article  CAS  PubMed  Google Scholar 

  13. Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS et al. Efficient transfection of embryonic and adult stem cells. Stem Cells 2004; 22: 531–543.

    Article  PubMed  Google Scholar 

  14. Siemen H, Nix M, Endl E, Koch P, Itskovitz-Eldor J, Brustle O . Nucleofection of human embryonic stem cells. Stem Cells Dev 2005; 14: 378–383.

    Article  CAS  PubMed  Google Scholar 

  15. Tan SM, Droge P . Comparative analysis of sequence-specific DNA recombination systems in human embryonic stem cells. Stem Cells 2005; 23: 868–873.

    Article  CAS  PubMed  Google Scholar 

  16. Hay DC, Sutherland L, Clark J, Burdon T . Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004; 22: 225–235.

    Article  CAS  PubMed  Google Scholar 

  17. Gerrard L, Zhao D, Clark AJ, Cui W . Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 2005; 23: 124–133.

    Article  CAS  PubMed  Google Scholar 

  18. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S et al. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005; 23: 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  19. Ohbayashi F, Balamotis MA, Kishimoto A, Aizawa E, Diaz A, Hasty P et al. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci USA 2005; 102: 13628–13633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galla M, Will E, Kraunus J, Chen L, Baum C . Retroviral pseudotransduction for targeted cell manipulation. Mol Cell 2004; 16: 309–315.

    Article  CAS  PubMed  Google Scholar 

  21. Smith-Arica JR, Thomson AJ, Ansell R, Chiorini J, Davidson B, McWhir J . Infection efficiency of human and mouse embryonic stem cells using adenoviral and adeno-associated viral vectors. Cloning Stem Cells 2003; 5: 51–62.

    Article  CAS  PubMed  Google Scholar 

  22. Ren C, Zhao M, Yang X, Li D, Jiang X, Wang L et al. Establishment and applications of Epstein–Barr virus-based episomal vectors in human embryonic stem cells. Stem Cells 2006; 24: 1338–1347.

    Article  CAS  PubMed  Google Scholar 

  23. Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N . Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 2001; 11: 514–518.

    Article  CAS  PubMed  Google Scholar 

  24. Sidhu KS, Tuch BE . Derivation of three clones from human embryonic stem cell lines by FACS sorting and their characterization. Stem Cells Dev 2006; 15: 61–69.

    Article  CAS  PubMed  Google Scholar 

  25. Tian C, Bagley J, Kaye J, Iacomini J . Induction of T cell tolerance to a protein expressed in the cytoplasm through retroviral-mediated gene transfer. J Gene Med 2003; 5: 359–365.

    Article  CAS  PubMed  Google Scholar 

  26. Ramezani A, Hawley TS, Hawley RG . Stable gammaretroviral vector expression during embryonic stem cell-derived in vitro hematopoietic development. Mol Ther 2006; 14: 245–254.

    Article  CAS  PubMed  Google Scholar 

  27. Jang JE, Shaw K, Yu XJ, Petersen D, Pepper K, Lutzko C et al. Specific and stable gene transfer to human embryonic stem cells using pseudotyped lentiviral vectors. Stem Cells Dev 2006; 15: 109–117.

    Article  CAS  PubMed  Google Scholar 

  28. Ellis J . Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005; 16: 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA . High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 2003; 21: 111–117.

    Article  CAS  PubMed  Google Scholar 

  30. Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ . High-efficiency RNA interference in human embryonic stem cells. Stem Cells 2005; 23: 299–305.

    Article  CAS  PubMed  Google Scholar 

  31. Suter DM, Cartier L, Bettiol E, Tirefort D, Jaconi ME, Dubois-Dauphin M et al. Rapid generation of stable transgenic embryonic stem cell lines using modular lentivectors. Stem Cells 2006; 24: 615–623.

    Article  CAS  PubMed  Google Scholar 

  32. Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P . A versatile tool for conditional gene expression and knockdown. Nat Methods 2006; 3: 109–116.

    Article  CAS  PubMed  Google Scholar 

  33. Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J . Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 2005; 7: 803–817.

    Article  CAS  PubMed  Google Scholar 

  34. Romano G . Current development of lentiviral-mediated gene transfer. Drug News Perspect 2005; 18: 128–134.

    Article  CAS  PubMed  Google Scholar 

  35. Fischer A, Cavazzana-Calvo M . Integration of retroviruses: a fine balance between efficiency and danger. PLoS Med 2005; 2: e10.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nolden L, Edenhofer F, Haupt S, Koch P, Wunderlich FT, Siemen H et al. Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat Methods 2006; 3: 461–467.

    Article  CAS  PubMed  Google Scholar 

  37. Urbach A, Schuldiner M, Benvenisty N . Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 2004; 22: 635–641.

    Article  CAS  PubMed  Google Scholar 

  38. Tsuchiya H, Harashima H, Kamiya H . Increased SFHR gene correction efficiency with sense single-stranded DNA. J Gene Med 2005; 7: 486–493.

    Article  CAS  PubMed  Google Scholar 

  39. Knauert MP, Kalish JM, Hegan DC, Glazer PM . Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol Ther 2006; 14: 392–400.

    Article  CAS  PubMed  Google Scholar 

  40. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  PubMed  Google Scholar 

  41. Wakayama S, Jakt ML, Suzuki M, Araki R, Hikichi T, Kishigami S et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocyst. Stem Cells 2006; doi:10.1634/stemcells.2005-0537.

    Article  CAS  PubMed  Google Scholar 

  42. Stojkovic M, Stojkovic P, Leary C, Hall VJ, Armstrong L, Herbert M et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 2005; 11: 226–231.

    Article  PubMed  Google Scholar 

  43. Lavoir MC, Weier J, Conaghan J, Pedersen RA . Poor development of human nuclear transfer embryos using failed fertilized oocytes. Reprod Biomed Online 2005; 11: 740–744.

    Article  PubMed  Google Scholar 

  44. Resnik DB . Regulating the market for human eggs. Bioethics 2001; 15: 1–25.

    Article  CAS  PubMed  Google Scholar 

  45. Cowan CA, Atienza J, Melton DA, Eggan K . Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309: 1369–1373.

    Article  CAS  PubMed  Google Scholar 

  46. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199–1203.

    Article  CAS  PubMed  Google Scholar 

  47. Rideout III WM, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R . Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002; 109: 17–27.

    Article  CAS  PubMed  Google Scholar 

  48. Gratsch TE, O'Shea KS . Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev Biol 2002; 245: 83–94.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ . Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci USA 2005; 102: 19081–19086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim JH, Do HJ, Choi SJ, Cho HJ, Park KH, Yang HM et al. Efficient gene delivery in differentiated human embryonic stem cells. Exp Mol Med 2005; 37: 36–44.

    Article  CAS  PubMed  Google Scholar 

  51. Pilat S, Carotta S, Schiedlmeier B, Kamino K, Mairhofer A, Will E et al. HOXB4 enforces equivalent fates of ES-cell-derived and adult hematopoietic cells. Proc Natl Acad Sci USA 2005; 102: 12101–12106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bowles KM, Vallier L, Smith JR, Alexander MR, Pedersen RA . HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells 2006; 24: 1359–1369.

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 2005; 201: 1603–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iuchi S, Dabelsteen S, Easley K, Rheinwald JG, Green H . Immortalized keratinocyte lines derived from human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burt RK, Verda L, Kim DA, Oyama Y, Luo K, Link C . Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med 2004; 199: 895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ying QL, Stavridis M, Griffiths D, Li M, Smith A . Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21: 183–186.

    Article  CAS  PubMed  Google Scholar 

  57. Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 2003; 9: 767–778.

    Article  CAS  PubMed  Google Scholar 

  58. Lavon N, Yanuka O, Benvenisty N . Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 2004; 72: 230–238.

    Article  CAS  PubMed  Google Scholar 

  59. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE . Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005; 166: 1781–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schuldiner M, Itskovitz-Eldor J, Benvenisty N . Selective ablation of human embryonic stem cells expressing a ‘suicide’ gene. Stem Cells 2003; 21: 257–265.

    Article  CAS  PubMed  Google Scholar 

  61. Knott A, Muller Y, Zunino SJ, Berens C, Hillen W . Conditional cell suicide using dox-dependent caspase-2 expression. J Gene Med 2003; 5: 343–354.

    Article  CAS  PubMed  Google Scholar 

  62. Painter RG, Lanson Jr NA, Jin Z, Park F, Wang G . Conditional expression of a suicide gene by the telomere reverse transcriptase promoter for potential post-therapeutic deletion of tumorigenesis. Cancer Sci 2005; 96: 607–613.

    Article  CAS  PubMed  Google Scholar 

  63. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA . Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366: 2019–2025.

    Article  PubMed  Google Scholar 

  64. Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 2005; 112: I166–I172.

    PubMed  Google Scholar 

  65. Kofidis T, deBruin JL, Tanaka M, Zwierzchoniewska M, Weissman I, Fedoseyeva E et al. They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur J Cardiothorac Surg 2005; 28: 461–466.

    Article  PubMed  Google Scholar 

  66. Menard C, Hagege AA, Agbulut O, Barro M, Morichetti MC, Brasselet C et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 2005; 366: 1005–1012.

    Article  PubMed  Google Scholar 

  67. Fabricius D, Bonde S, Zavazava N . Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 2005; 79: 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  68. Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004; 22: 448–456.

    Article  CAS  PubMed  Google Scholar 

  69. Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2006; 24: 221–229.

    Article  PubMed  Google Scholar 

  70. Benigni A, Tomasoni S, Turka LA, Longaretti L, Zentilin L, Mister M et al. Adeno-associated virus-mediated CTLA4Ig gene transfer protects MHC-mismatched renal allografts from chronic rejection. J Am Soc Nephrol 2006; 17: 1665–1672.

    Article  CAS  PubMed  Google Scholar 

  71. Matin MM, Walsh JR, Gokhale PJ, Draper JS, Bahrami AR, Morton I et al. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 2004; 22: 659–668.

    Article  CAS  PubMed  Google Scholar 

  72. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 2006; 439: 216–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Q Daley.

Additional information

Note: A table reviewing the existing genetically modified hESC lines is available as supplementary material.

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, F., Daley, G. Progress and prospects: gene transfer into embryonic stem cells. Gene Ther 13, 1431–1439 (2006). https://doi.org/10.1038/sj.gt.3302854

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302854

Keywords

This article is cited by

Search

Quick links