Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Gene transfer of RANTES and MCP-1 chemokine antagonists prolongs cardiac allograft survival

Abstract

Vascularized organ allografts are rapidly destroyed by host immune cells that are recruited along chemokine gradients. Among chemokines, Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) CC chemokine ligand (CCL5) and monocyte chemoattractant protein (MCP)-1 (CCL2) are upregulated in rejecting cardiac allografts. To antagonize these chemokines, we constructed adenoviral vectors expressing NH2-terminal deletion (8ND) mutants of the respective genes. Using the F344-to-LEW rat model, intragraft gene transfer of chemokine analogs prolonged cardiac allograft survival from 10.1±0.7 and 10.4±0.7 days using non-coding adenovirus and vehicle alone, respectively, to 17.0±0.7 days for 8ND-RANTES (P<0.001) and 14.2±0.8 days for 8ND-MCP-1 (P<0.01). 8ND-RANTES reduced graft infiltration by monocytes/macrophages, cluster of differentiation (CD) 8α+ and T-cell receptor αβ+ cells, while 8ND-MCP-1 reduced monocytes/macrophages. In mixed leukocyte reactions in vitro, proliferation of host lymphocytes from regional lymph nodes in response to donor splenocytes was unaffected by 8ND-RANTES gene transfer. Using a two-gene approach, the contribution of 8ND-MCP-1 was negligible, consistent with available evidence that 8ND-RANTES inhibits both RANTES and MCP-1 activities. 8ND-RANTES gene transfer and a short course of low-dose cyclosporine A synergistically prolonged graft survival to 37.8±5.5 vs 15.4±0.5 days with cyclosporine alone (P<0.001). These results suggest a role for anti-chemokine gene therapy as an adjuvant therapy in heart transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Baggiolini M . Chemokines and leukocyte traffic. Nature 1998; 392: 565–568.

    Article  CAS  Google Scholar 

  2. Hancock WW, Gao W, Faia KL, Csizmadia V . Chemokines and their receptors in allograft rejection. Curr Opin Immunol 2000; 12: 511–516.

    Article  CAS  Google Scholar 

  3. Mulligan MS, McDuffie JE, Shanley TP, Guo RF, Vidya Sarma J, Warner RL et al. Role of RANTES in experimental cardiac allograft rejection. Exp Mol Pathol 2000; 69: 167–174.

    Article  CAS  Google Scholar 

  4. Russell ME, Adams DH, Wyner LR, Yamashita Y, Halnon NJ, Karnovsky MJ . Early and persistent induction of monocyte chemoattractant protein-1 in rat cardiac allografts. Proc Natl Acad Sci USA 1993; 90: 6086–6090.

    Article  CAS  Google Scholar 

  5. Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C, Davis MM et al. A human T-cell specific molecule is a member of a new gene family. J Immunol 1988; 141: 1018–1025.

    CAS  PubMed  Google Scholar 

  6. Danoff TM, Lalley PA, Chang YS, Heeger PS, Neilson EG . Cloning, genomic organization, and chromosomal localization of the Scya5 gene encoding the murine chemokine RANTES. J Immunol 1994; 152: 1182–1189.

    CAS  PubMed  Google Scholar 

  7. Rathanaswami P, Hachicha M, Sadick M, Schall TJ, McColl SR . Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. J Biol Chem 1993; 268: 5834–5839.

    CAS  PubMed  Google Scholar 

  8. Marfaing-Koka A, Devergne O, Gorgone G, Portier A, Schall TJ, Galanaud P et al. Regulation of the production of the RANTES chemokine by endothelial cells. Synergistic induction by IFN-gamma plus TNF-alpha and inhibition by IL-4 and IL-13. J Immunol 1995; 154: 1870–1878.

    CAS  PubMed  Google Scholar 

  9. Gong JH, Uguccioni M, Dewald B, Baggiolini M, Clark-Lewis I . RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem 1996; 271: 10521–10527.

    Article  CAS  Google Scholar 

  10. Schall TJ, Bacon K, Toy KJ, Goeddel DV . Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347: 669–671.

    Article  CAS  Google Scholar 

  11. Rot A, Krieger M, Brunner T, Bischoff SC, Schall TJ, Dahinden CA . RANTES and macrophage inflammatory protein 1alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992; 176: 1489–1495.

    Article  CAS  Google Scholar 

  12. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B . Activation of NK cells by CC chemokines: chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 1996; 156: 322–327.

    CAS  PubMed  Google Scholar 

  13. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188: 373–386.

    Article  CAS  Google Scholar 

  14. Taub DD, Ortaldo JR, Turcovski-Corrales SM, Key ML, Longo DL, Murphy WJ . Beta chemokines costimulate lymphocyte cytolysis, proliferation, and lymphokine production. J Leukocyte Biol 1996; 59: 81–89.

    Article  CAS  Google Scholar 

  15. Makino Y, Cook DN, Smithies O, Hwang OY, Neilson EG, Turka LA et al. Impaired T cell function in RANTES-deficient mice. Clin Immunol 2002; 102: 302–309.

    Article  CAS  Google Scholar 

  16. Gao W, Topham PS, King JA, Smiley ST, Csizmadia V, Lu B et al. Targeting of the chemokine receptor CCR1 suppresses development of the acute and chronic cardiac allograft rejection. J Clin Invest 2000; 105: 35–44.

    Article  CAS  Google Scholar 

  17. Gao W, Faia KL, Csizmadia V, Smiley ST, Soler D, King JA et al. Beneficial effects of targeting CCR5 in allograft recipients. Transplantation 2001; 72: 1199–1205.

    Article  CAS  Google Scholar 

  18. Azzawi M, Hasleton PS, Geraghty PJ, Yonan N, Krysiak P, El-Gammal A et al. RANTES chemokine expression is related to acute cardiac cellular rejection and infiltration by CD45RO T-lymphocytes and macrophages. J Heart Lung Transplant 1998; 17: 881–887.

    CAS  PubMed  Google Scholar 

  19. Fischereder M, Luckow B, Hocher B, Wuthrich RP, Rothenpieler U, Schneeberger H et al. CC chemokine receptor 5 and renal-transplant survival. Lancet 2001; 357: 1758–1761.

    Article  CAS  Google Scholar 

  20. Rollins BJ . Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease. Mol Med Today 1996; 2: 198–204.

    Article  CAS  Google Scholar 

  21. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998; 187: 601–608.

    Article  CAS  Google Scholar 

  22. Fahmy NM, Yamani MH, Starling RC, Ratliff NB, Young JB, McCarthy PM et al. Chemokine and chemokine receptor gene expression indicates acute rejection of human cardiac transplants. Transplantation 2003; 75: 72–78.

    Article  CAS  Google Scholar 

  23. de Groot-Kruseman HA, Baan CC, Loonen EH, Mol WM, Niesters HG, Maat AP et al. Failure to down-regulate intragraft cytokine mRNA expression shortly after clinical heart transplantation is associated with high incidence of acute rejection. J Heart Lung Transplant 2001; 20: 503–510.

    Article  CAS  Google Scholar 

  24. Vassalli G, Fleury S, Li J, Goy JJ, Kappenberger L, von Segesser LK . Gene transfer of cytoprotective and immunomodulatory molecules for prevention of cardiac allograft rejection. Eur J Cardiothorac Surg 2003; 24: 794–806.

    Article  Google Scholar 

  25. Mujynya Ludunge K, Viswambharan H, Driscoll R, Ming XF, von Segesser LK, Kappenberger L et al. Arterial gene transfer of endothelial nitric oxide synthase inhibits atherosclerotic lesion formation in apolipoprotein E-deficient mice. Basic Res Cardiol 2004; 100: 102–111.

    Article  Google Scholar 

  26. Maier S, Tertilt C, Chambron N, Gerauer K, Huser N, Heidecke CD et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28−/− mice. Nat Med 2001; 7: 557–562.

    Article  CAS  Google Scholar 

  27. Fischer FR, Luo Y, Luo M, Santambrogio L, Dorf ME . RANTES-induced chemokine cascade in dendritic cells. J Immunol 2001; 167: 1637–1643.

    Article  CAS  Google Scholar 

  28. Wang CY, Naka Y, Liao H, Oz MC, Springer TA, Gutierrez-Ramos JC et al. Cardiac graft intercellular adhesion molecule-1 (ICAM-1) and interleukine-1 expression mediate primary isograft failure and induction of ICAM-1 in organs remote from the site of transplantation. Circ Res 1998; 82: 762–772.

    Article  CAS  Google Scholar 

  29. Schroder G, Risch K, Nizze H, Kolls J, Reinke P, Brock J et al. Immune response after adenoviral gene transfer in syngeneic heart transplants: effects of anti-CD4 monoclonal antibody therapy. Transplantation 2000; 70: 191–198.

    CAS  PubMed  Google Scholar 

  30. DeBruyne LA, Li K, Bishop DK, Bromberg JS . Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Therapy 2000; 7: 575–582.

    Article  CAS  Google Scholar 

  31. Horuk R, Clayberger C, Krensky AM, Wang Z, Grone HJ, Weber C et al. A non-peptide functional antagonist of the CCR1 chemokine receptor is effective in rat heart transplant rejection. J Biol Chem 2001; 276: 4199–4204.

    Article  CAS  Google Scholar 

  32. Horuk R, Shurey S, Ng HP, May K, Bauman JG, Islam I et al. CCR1-specific non-peptide antagonist: efficacy in a rabbit allograft rejection model. Immunol Lett 2001; 76: 193–201.

    Article  CAS  Google Scholar 

  33. Grone HJ, Weber C, Weber KS, Grone EF, Rabelink T, Klier CM et al. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J 1999; 13: 1371–1383.

    Article  CAS  Google Scholar 

  34. Bedke J, Stojanovic T, Grone HJ, Heuser M, Scheele L, Proudfoot AE et al. Met-RANTES improves acute rejection-induced-injury in rat small bowel transplantation. Transplant Proc 2002; 34: 1049.

    Article  CAS  Google Scholar 

  35. Pellegrini C, O'Brien T, Jeppsson A, Fitzpatrick LA, Yap J, Tazelaar HD et al. Influence of temperature on adenovirus-mediated gene transfer. Eur J Cardothorac Surg 1998; 13: 599–603.

    Article  CAS  Google Scholar 

  36. Pellegrini C, Jeppsson A, Taner CB, O'Brien T, Miller VM, Tazelaar HD et al. Highly efficient ex vivo gene transfer to the transplanted heart by means of hypothermic perfusion with a low dose of adenoviral vector. J Thorac Cardiovasc Surg 2000; 119: 493–500.

    Article  CAS  Google Scholar 

  37. Asfour B, Baba HA, Scheld HH, Hruban RH, Hammel D, Byrne BJ . Uniform long-term gene expression using adeno-associated virus (AAV) by ex vivo recirculation in rat-cardiac isografts. Thorac Cardiovasc Surg 2002; 50: 347–350.

    Article  CAS  Google Scholar 

  38. Okada K, Yamashita C, Okada M, Okada M . Successful 24-h rabbit heart preservation by hypothermic continuous coronary microperfusion with oxygenated University of Wisconsin Solution. Ann Thorac Surg 1995; 60: 1723–1728.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss National Science Foundation research grants #632-058215 (to GV) and #3100-064.834.01 (to SF), the Lausanne Foundation of Cardiac Transplantation, the Swiss Cardiology Foundation, and the Teo Rossi di Montelera Foundation, Lausanne, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Vassalli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleury, S., Li, J., Simeoni, E. et al. Gene transfer of RANTES and MCP-1 chemokine antagonists prolongs cardiac allograft survival. Gene Ther 13, 1104–1109 (2006). https://doi.org/10.1038/sj.gt.3302765

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302765

Keywords

Search

Quick links