Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A human adenoviral vector with a chimeric fiber from canine adenovirus type 1 results in novel expanded tropism for cancer gene therapy

Abstract

The development of novel therapeutic strategies is imperative for the treatment of advanced cancers like ovarian cancer and glioma, which are resistant to most traditional treatment modalities. In this regard, adenoviral (Ad) cancer gene therapy is a promising approach. However, the gene delivery efficiency of human serotype 5 recombinant adenoviruses (Ad5) in cancer gene therapy clinical trials to date has been limited, mainly due to the paucity of the primary Ad5 receptor, the coxsackie and adenovirus receptor (CAR), on human cancer cells. To circumvent CAR deficiency, Ad5 vectors have been retargeted by creating chimeric fibers possessing the knob domains of alternate human Ad serotypes. Recently, more radical modifications based on ‘xenotype’ knob switching with non-human adenovirus have been exploited. Herein, we present the characterization of a novel vector derived from a recombinant Ad5 vector containing the canine adenovirus serotype 1 (CAV-1) knob (Ad5Luc1-CK1), the tropism of which has not been previously described. We compared the function of this vector with our other chimeric viruses displaying the CAV-2 knob (Ad5Luc1-CK2) and Ad3 knob (Ad5/3Luc1). Our data demonstrate that the CAV-1 knob can alter Ad5 tropism through the use of a CAR-independent entry pathway distinct from that of both Ad5Luc1-CK2 and Ad5/3-Luc1. In fact, the gene transfer efficiency of this novel vector in ovarian cancer cell lines, and more importantly in patient ovarian cancer primary tissue slice samples, was superior relative to all other vectors applied in this study. Thus, CAV-1 knob xenotype gene transfer represents a viable means to achieve enhanced transduction of low-CAR tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  2. Curiel DT, Douglas JT . Adenoviral Vectors for Gene Therapy. Academic Press: New York, 2002.

    Google Scholar 

  3. Yacoub A et al. MDA-7 regulates cell growth and radiosensitivity in vitro of primary (non-established) human glioma cells. Cancer Biol Ther 2004; 3: 739–751.

    Article  CAS  PubMed  Google Scholar 

  4. Okegawa T et al. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 2000; 60: 5031–5036.

    CAS  PubMed  Google Scholar 

  5. Qin M et al. Coxsackievirus adenovirus receptor expression predicts the efficiency of adenoviral gene transfer into non-small cell lung cancer xenografts. Clin Cancer Res 2003; 9: 4992–4999.

    CAS  PubMed  Google Scholar 

  6. Anders M et al. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackie and adenovirus receptor in cancer cells. Cancer Res 2003; 63: 2088–2095.

    CAS  PubMed  Google Scholar 

  7. Shayakhmetov DM, Li ZY, Ni S, Lieber A . Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res 2002; 62: 1063–1068.

    CAS  PubMed  Google Scholar 

  8. Wickham TJ, Carrion ME, Kovesdi I . Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Therapy 1995; 2: 750–756.

    CAS  PubMed  Google Scholar 

  9. Dmitriev I et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT . Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996; 70: 6839–6846.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hemmi S et al. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–2373.

    Article  CAS  PubMed  Google Scholar 

  13. Miller CR et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998; 58: 5738–5748.

    CAS  PubMed  Google Scholar 

  14. Glasgow JN et al. An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 2004; 324: 103–116.

    Article  CAS  PubMed  Google Scholar 

  15. Zakhartchouk A, Connors W, van Kessel A, Tikoo SK . Bovine adenovirus type 3 containing heterologous protein in the C-terminus of minor capsid protein IX. Virology 2004; 320: 291–300.

    Article  CAS  PubMed  Google Scholar 

  16. Kremer EJ, Boutin S, Chillon M, Danos O . Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000; 74: 505–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hess M et al. The avian adenovirus penton: two fibres and one base. J Mol Biol 1995; 252: 379–385.

    Article  CAS  PubMed  Google Scholar 

  18. Soudais C et al. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 2000; 74: 10639–10649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curtis R, Barnett KC . The ‘blue eye’ phenomenon. Vet Rec 1983; 112: 347–353.

    Article  CAS  PubMed  Google Scholar 

  20. Kremer EJ . CAR chasing: canine adenovirus vectors-all bite and no bark? J Gene Med 2004; (6 Suppl 1): S139–S151.

    Article  CAS  PubMed  Google Scholar 

  21. Marusyk RG, Norrby E, Lundqvist U . Biophysical comparison of two canine adenoviruses. J Virol 1970; 5: 507–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marusyk RG, Yamamoto T . Characterization of a canine adenovirus hemagglutinin. Can J Microbiol 1971; 17: 151–155.

    Article  CAS  PubMed  Google Scholar 

  23. Marusyk RG . Comparison of the immunological properties of two canine adenoviruses. Can J Microbiol 1972; 18: 817–823.

    Article  CAS  PubMed  Google Scholar 

  24. Marusyk RG, Hammarskjold ML . The genetic relationship of two canine adenoviruses as determined by nucleic acid hybridization. Microbios 1972; 5: 259–264.

    CAS  PubMed  Google Scholar 

  25. Green NM et al. Evidence for a repeating cross-beta sheet structure in the adenovirus fibre. EMBO J 1983; 2: 1357–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rasmussen UB, Schlesinger Y, Pavirani A, Mehtali M . Sequence analysis of the canine adenovirus 2 fiber-encoding gene. Gene 1995; 159: 279–280.

    Article  CAS  PubMed  Google Scholar 

  27. Soudais C et al. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 2000; 74: 10639–10649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim M et al. The coxsackievirus and adenovirus receptor acts as a tumour suppressor in malignant glioma cells. Br J Cancer 2003; 88: 1411–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanerva A et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002; 5: 695–704.

    Article  CAS  PubMed  Google Scholar 

  30. Kanerva A et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  31. Kirby TO et al. A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clin Cancer Res 2004; 10: 8697–8703.

    Article  CAS  PubMed  Google Scholar 

  32. Morrison MD, Onions DE, Nicolson L . Complete DNA sequence of canine adenovirus type 1. J Gen Virol 1997; 78: 873–878.

    Article  CAS  PubMed  Google Scholar 

  33. Hemminki A et al. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 2003; 7: 163–173.

    Article  CAS  PubMed  Google Scholar 

  34. Hu RL et al. Detection and differentiation of CAV-1 and CAV-2 by polymerase chain reaction. Vet Res Commun 2001; 25: 77–84.

    Article  CAS  PubMed  Google Scholar 

  35. Jouvenne P, Hamelin C . Comparative analysis of the canAV-1 and canAV-2 genomes. Intervirology 1986; 26: 109–114.

    Article  CAS  PubMed  Google Scholar 

  36. Willis AM . Canine viral infections. Vet Clin North Am Small Anim Pract 2000; 30: 1119–1133.

    Article  CAS  PubMed  Google Scholar 

  37. Erles K, Dubovi EJ, Brooks HW, Brownlie J . Longitudinal study of viruses associated with canine infectious respiratory disease. J Clin Microbiol 2004; 42: 4524–4529.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Short JJ et al. Adenovirus serotype 3 utilizes CD80 (B7.1) and CD86 (B7.2) as cellular attachment receptors. Virology 2004; 322: 349–359.

    Article  CAS  PubMed  Google Scholar 

  39. Sirena D et al. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 2004; 78: 4454–4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–330.

    CAS  PubMed  Google Scholar 

  41. Cripe TP et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res 2001; 61: 2953–2960.

    CAS  PubMed  Google Scholar 

  42. Vanderkwaak TJ et al. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol 1999; 74: 227–234.

    Article  CAS  PubMed  Google Scholar 

  43. Vickers AE et al. Organ slice viability extended for pathway characterization: an in vitro model to investigate fibrosis. Toxicol Sci 2004; 82: 534–544.

    Article  CAS  PubMed  Google Scholar 

  44. Krumdieck CL, dos Santos JE, Ho KJ . A new instrument for the rapid preparation of tissue slices. Anal Biochem 1980; 104: 118–123.

    Article  CAS  PubMed  Google Scholar 

  45. Kirby To RA et al. A Novel ex vivo model system for evaluation of CRAds therapeitic efficacy and toxixity. Clin Cancer Res 2004; 10: 8697–8703.

    Article  PubMed  Google Scholar 

  46. Olinga P et al. Comparison of five incubation systems for rat liver slices using functional and viability parameters. J Pharmacol Toxicol Methods 1997; 38: 59–69.

    Article  CAS  PubMed  Google Scholar 

  47. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 1996; 70: 4805–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: Grant of the Deutsche Forschungsgemeinschaft Sto 647/1-1 (to MA Stoff-Khalili); Department of Defense W81XWH-05-1-0035, NIH Grant R01CA083821, R01CA94084 (to DT Curiel); R01CA93796 (to GP Siegal). We thank Lucretia Sumerel for invaluable technical assistance. DNA vectors pSHAFT, pNEB.PK.3.6, and pVK700 were generous gifts from Dr Victor Krasnykh.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoff-Khalili, M., Rivera, A., Glasgow, J. et al. A human adenoviral vector with a chimeric fiber from canine adenovirus type 1 results in novel expanded tropism for cancer gene therapy. Gene Ther 12, 1696–1706 (2005). https://doi.org/10.1038/sj.gt.3302588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302588

Keywords

This article is cited by

Search

Quick links