Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia

Abstract

Hypoxia represents an endogenous pathophysiological signal underlying cell growth, adaptation and death in a variety of diseases, including ischemic heart diseases, stroke and solid tumors. A vigilant vector system depends on a gene switch which can sense the hypoxia signal occurring in ischemic events and turn on/off protective gene expressions when necessary. This system uses the oxygen-dependent degradation domain derived from hypoxia-inducible factor 1α as the hypoxia sensor and a double-vector system as signal amplifier. For treating ischemic heart diseases, a cardiac-specific MLC-2v promoter is used to deliver transgenes specifically to the heart. When tested in cardiomyocyte cultures, it produced a rapid and robust gene induction upon exposure to low oxygen. In a mouse model for myocardial infarction, the vigilant vectors turned on therapeutic genes such as heme oxygenase-1 in response to ischemia, significantly reduced apoptosis in the infarct area and improved cardiac functions. The hypoxia-regulated gene transfer afforded by the vigilant vectors may provide a powerful tool for delivering therapeutic proteins specifically to ischemic tissues with optimal physiological control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Semenza GL et al. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 2000; 475: 123–130.

    Article  CAS  PubMed  Google Scholar 

  2. Acker T, Plate KH . A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J Mol Med 2002; 80: 562–575.

    Article  CAS  PubMed  Google Scholar 

  3. Khan TA, Sellke FW, Laham RJ . Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Therapy 2003; 10: 285–291.

    Article  CAS  PubMed  Google Scholar 

  4. Lee RJ et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000; 102: 898–901.

    Article  CAS  PubMed  Google Scholar 

  5. Springer ML et al. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 1998; 2: 549–558.

    Article  CAS  PubMed  Google Scholar 

  6. Binley K et al. Hypoxia-mediated tumour targeting. Gene Therapy 2003; 10: 540–549.

    Article  CAS  PubMed  Google Scholar 

  7. Greco O et al. Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Therapy 2002; 9: 1403–1411.

    Article  CAS  PubMed  Google Scholar 

  8. Su H, Arakawa-Hoyt J, Kan YW . Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci USA 2002; 99: 9480–9485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ido A et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res 2001; 61: 3016–3021.

    CAS  PubMed  Google Scholar 

  10. Boast K et al. Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum Gene Ther 1999; 10: 2197–2208.

    Article  CAS  PubMed  Google Scholar 

  11. Binley K et al. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Therapy 1999; 6: 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  12. Ruan et al. A hypoxia-regulated adeno-associated virus vector for cancer-specific gene therapy. Neoplasia 2001; 3: 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bainbridge JW et al. Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization. Gene Therapy 2003; 10: 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  14. Binley K et al. Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood 2002; 100: 2406–2413.

    Article  CAS  PubMed  Google Scholar 

  15. Prentice H et al. Regulated expression of a foreign gene targeted to the ischaemic myocardium. Cardiovasc Res 1997; 35: 567–574.

    Article  CAS  PubMed  Google Scholar 

  16. Tang Y, Jackson M, Qian K, Phillips MI . Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 2002; 39: 695–698.

    Article  CAS  PubMed  Google Scholar 

  17. Phillips M et al. Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 2002; 39: 651–655.

    Article  CAS  PubMed  Google Scholar 

  18. Pachori AS et al. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury. Proc Natl Acad Sci USA 2004; 101: 12282–12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang Y et al. Vigilant vectors: adeno-associated virus with a biosensor to switch on amplified therapeutic genes in specific tissues in life-threatening diseases. Methods 2002; 28: 259–266.

    Article  CAS  PubMed  Google Scholar 

  20. Semenza GL . HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001; 13: 167–171.

    Article  CAS  PubMed  Google Scholar 

  21. Salnikow K, Su W, Blagosklonny MV, Costa M . Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res 2000; 60: 3375–3378.

    CAS  PubMed  Google Scholar 

  22. Richard DE, Berra E, Pouyssegur J . Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 2000; 275: 26765–26771.

    CAS  PubMed  Google Scholar 

  23. Sandau KB, Fandrey J, Brune B . Accumulation of HIF-1alpha under the influence of nitric oxide. Blood 2001; 97: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  24. Stroka DM et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 2001; 15: 2445–2453.

    Article  CAS  PubMed  Google Scholar 

  25. Huang LE, Gu J, Schau M, Bunn HF . Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95: 7987–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sutter CH, Laughner E, Semenza GL . Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 2000; 97: 4748–4753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, O'Malley Jr BW, Tsai SY, O'Malley BW . A regulatory system for use in gene transfer. Proc Natl Acad Sci USA. 1994; 91: 8180–8184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Brien TX, Lee KJ, Chien KR . Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA 1993; 90: 5157–5161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathey DG, Sheehan FH, Schofer J, Dodge HT . Time from onset of symptoms to thrombolytic therapy: a major determinant of myocardial salvage in patients with acute transmural infarction. J Am Coll Cardiol 1985; 6: 518–525.

    Article  CAS  PubMed  Google Scholar 

  30. Heyndrickx GR et al. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 1978; 234: H653–H659.

    CAS  PubMed  Google Scholar 

  31. Rumsey WL, Pawlowski M, Lejavardi N, Wilson DF . Oxygen pressure distribution in the heart in vivo and evaluation of the ischemic ‘border zone’. Am J Physiol 1994; 266: H1676–H1680.

    CAS  PubMed  Google Scholar 

  32. Dekker M . Oxygenation of solid tumours. In: Teicher BA (ed). Drug Resistance in Oncology. Marcel Dekker, Inc.: New York, 1993.

    Google Scholar 

  33. Melo LG et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 2002; 105: 602–607.

    Article  CAS  PubMed  Google Scholar 

  34. Vulapalli SR et al. Cardioselective overexpression of HO-1 prevents I/R-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 2002; 283: H688–H694.

    Article  CAS  PubMed  Google Scholar 

  35. Yet SF et al. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J 2003; 17: 1759–1761.

    Article  CAS  PubMed  Google Scholar 

  36. Yet SF et al. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 2001; 89: 168–173.

    Article  CAS  PubMed  Google Scholar 

  37. Tang YL et al. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system. Hypertension 2004; 43: 746–751.

    Article  CAS  PubMed  Google Scholar 

  38. Duan D, Yue Y, Yan Z, Engelhardt JF . A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 2000; 6: 595–598.

    Article  CAS  PubMed  Google Scholar 

  39. Sun L, Li J, Xiao X . Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 2000; 6: 599–602.

    Article  CAS  PubMed  Google Scholar 

  40. Nakai H, Storm TA, Kay MA . Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 2000; 18: 527–532.

    Article  CAS  PubMed  Google Scholar 

  41. Rendahl KG et al. Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Nat Biotechnol 1998; 16: 757–761.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Sean M Sullivan for providing pCMV and advice on the double vector system; Dr Gregg L Semenza for providing pCEP4/HIF-1alpha. This work was supported by the NIH MERIT award HL 27334 to MIP, Postdoctoral Fellowship from American Heart Association to Yao Liang Tang (0325378B) and Predoctoral Fellowship from American Heart Association to Yi Tang (0110140B).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Tang, Y., Zhang, Y. et al. A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Ther 12, 1163–1170 (2005). https://doi.org/10.1038/sj.gt.3302513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302513

Keywords

Search

Quick links