Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy for cystic fibrosis: an example for lung gene therapy

Abstract

Gene therapy is currently being evaluated for a wide range of acute and chronic lung diseases. The requirement of gene transfer into the individual cell types of the complex lung structure will very much depend on the target disease. Over the last decade, the gene therapy community has recognized that there is not even one vector that is good for all applications, but that the gene transfer agent has to be carefully chosen. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfills these criteria and is therefore a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy and discuss the progress made in this field over the last couple of years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Breeze RG, Wheeldon EB . The cells of the pulmonary airways. Am Rev Respir Dis 1977; 116: 705–777.

    Article  CAS  PubMed  Google Scholar 

  2. Welsh M, Ramsey BW, Accurso F, Cutting GR . Cystic fibrosis. In: Scriver AB, Sly WS, Valle D (eds). The Molecular and Metabolic Basis of Inherited Disease. McGraw-Hill: New York, 2001, pp 5121–5188.

    Google Scholar 

  3. Riordan JR et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  4. Alton EW et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat Genet 1993; 5: 135–142.

    Article  CAS  PubMed  Google Scholar 

  5. Drumm ML et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 1990; 62: 1227–1233.

    Article  CAS  PubMed  Google Scholar 

  6. Engelhardt JF et al. Expression of the cystic fibrosis gene in adult human lung. J Clin Invest 1994; 93: 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrari S, Griesenbach U, Geddes DM, Alton E . Immunological hurdles to lung gene therapy. Clin Exp Immunol 2003; 132: 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weiss DJ . Delivery of gene transfer vectors to lung: obstacles and the role of adjunct techniques for airway administration. Mol Ther 2002; 6: 148–152.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrari S, Geddes DM, Alton EW . Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv Drug Deliv Rev 2002; 54: 1373–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pickles RJ et al. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 2000; 74: 6050–6057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Worgall S et al. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther 1997; 8: 1675–1684.

    Article  CAS  PubMed  Google Scholar 

  12. Katkin JP et al. Aerosol delivery of a beta-galactosidase adenoviral vector to the lungs of rodents. Hum Gene Ther 1995; 6: 985–995.

    Article  CAS  PubMed  Google Scholar 

  13. Scaria A et al. Adenovirus-mediated persistent cystic fibrosis transmembrane conductance regulator expression in mouse airway epithelium. J Virol 1998; 72: 7302–7309.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harvey BG et al. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther 2002; 13: 15–63.

    Article  CAS  PubMed  Google Scholar 

  15. Joseph PM et al. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications. Hum Gene Ther 2001; 12: 1369–1382.

    Article  CAS  PubMed  Google Scholar 

  16. Walters RW et al. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999; 274: 10219–10226.

    Article  CAS  PubMed  Google Scholar 

  17. Gregory LG et al. Enhancement of adenovirus-mediated gene transfer to the airways by DEAE dextran and sodium caprate in vivo. Mol Ther 2003; 7: 19–26.

    Article  CAS  PubMed  Google Scholar 

  18. Harvey BG et al. Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest 1999; 104: 1245–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toietta G et al. Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol Ther 2003; 7: 649–658.

    Article  CAS  PubMed  Google Scholar 

  20. Aitken ML et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 2001; 12: 1907–1916.

    Article  CAS  PubMed  Google Scholar 

  21. Wagner JA et al. Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus. Lancet 1998; 351: 1702–1703.

    Article  CAS  PubMed  Google Scholar 

  22. Moss RB et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004; 125: 509–521.

    Article  PubMed  Google Scholar 

  23. Duan D, Yue Y, Engelhardt JF . Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 2001; 4: 383–391.

    Article  CAS  PubMed  Google Scholar 

  24. Halbert CL, Allen JM, Miller AD . Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 2002; 20: 697–701.

    Article  CAS  PubMed  Google Scholar 

  25. Calcedo R, Gallery L, Gao G, Wilson J . Serological characterisation of human and non-human primate AAVs. Mol Ther 2003; 7: S41 (abstract).

    Google Scholar 

  26. Zabner J et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 2000; 74: 3852–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Q et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 10405–10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi W, Bartlett JS . RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther 2003; 7: 515–525.

    Article  CAS  PubMed  Google Scholar 

  29. Beck SE et al. Repeated delivery of adeno-associated virus vectors to the rabbit airway. J Virol 1999; 73: 9446–9455.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Halbert CL et al. Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J Virol 1997; 71: 5932–5941.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Auricchio A et al. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110: 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fischer A et al. Successful transgene expression with serial doses of aerosolized rAAV2 vectors in Rhesus macaques. Mol Ther 2003; 8: 918–926.

    Article  CAS  PubMed  Google Scholar 

  33. Ferrari S et al. Recombinant Sendai virus-mediated CFTR cDNA transfer. Mol Ther 2003; 7: S38 (abstract).

    Google Scholar 

  34. Zhang L, Pepples M, Collins P, Pickles R . RSV and PIV3 target human ciliated airway epithelial cells: efficient gene transfer vectors for cystic fibrosis lung disease. Mol Ther 2003; 7: S36 (abstract).

    Article  Google Scholar 

  35. Inoue M et al. A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-to-cell spreading. J Virol 2003; 77: 6419–6429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang G et al. Apical barriers to airway epithelial cell gene transfer with amphotropic retroviral vectors. Gene Therapy 2002; 9: 922–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Limberis M, Anson DS, Fuller M, Parsons DW . Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther 2002; 13: 1961–1970.

    Article  CAS  PubMed  Google Scholar 

  38. Sinn PL et al. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 2003; 77: 5902–5910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kobayashi M, Iida A, Ueda Y, Hasegawa M . Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 2003; 77: 2607–2614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fajac I, Briand P, Monsigny M, Midoux P . Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther 1999; 10: 395–406.

    Article  CAS  PubMed  Google Scholar 

  41. Fajac I et al. Uptake of plasmid/glycosylated polymer complexes and gene transfer efficiency in differentiated airway epithelial cells. J Gene Med 2003; 5: 38–48.

    Article  CAS  PubMed  Google Scholar 

  42. Klink D, Yu QC, Glick MC, Scanlin T . Lactosylated poly-L-lysine targets a potential lactose receptor in cystic fibrosis and non-cystic fibrosis airway epithelial cells. Mol Ther 2003; 7: 73–80.

    Article  CAS  PubMed  Google Scholar 

  43. Ziady AG et al. Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor. Mol Ther 2002; 5: 413–419.

    Article  CAS  PubMed  Google Scholar 

  44. Cunningham S et al. Evaluation of a porcine model for pulmonary gene transfer using a novel synthetic vector. J Gene Med 2002; 4: 438–446.

    Article  CAS  PubMed  Google Scholar 

  45. Konstan M et al. Single dose escalation study to evaluate safety of nasal administration of CFTR001 gene transfer vector to subjects with cystic fibrosis. Mol Ther 2003; 7: S386 (abstract).

    Google Scholar 

  46. Yew NS et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 2000; 1: 255–262.

    Article  CAS  PubMed  Google Scholar 

  47. Gill DR et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  48. Yew NS et al. High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 2001; 4: 75–82.

    Article  CAS  PubMed  Google Scholar 

  49. Machado-Aranda D, Adir Y, Sznajader A, Dean D . Electroporation-mediated transfer of the Na-K-ATpase b1 subunit safely increases alveolar fluid clearance in rat lungs. Mol Ther 2003; 7: S381 (abstract).

    Google Scholar 

  50. Fox E et al. Towards nucleic acid transfer to the airway epithelium via the systemic route. Mol Ther 2002; 5: S197 (abstract).

    Google Scholar 

  51. Koehler DR et al. Targeting transgene expression for cystic fibrosis gene therapy. Mol Ther 2001; 4: 58–65.

    Article  CAS  PubMed  Google Scholar 

  52. Ferkol T et al. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J Clin Invest 1995; 95: 493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Griesenbach U et al. Conversion of wild-type CFTR to the G551D mutation in primary rat hepatocytes using RNA/DNA oligonucleotides. Pediat Pulmonol 2001; 32: 252 (abstract).

    Google Scholar 

  54. Goncz KK, Kunzelmann K, Xu Z, Gruenert DC . Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Hum Mol Genet 1998; 7: 1913–1919.

    Article  CAS  PubMed  Google Scholar 

  55. Lambert G et al. Control of cystic fibrosis transmembrane conductance regulator expression by BAP31. J Biol Chem 2001; 276: 20340–20345.

    Article  CAS  PubMed  Google Scholar 

  56. Griesenbach U et al. LacZ siRNA and antisense DNA do not decrease β-galactosidase expression in the airways of K18-lacZ mice. Pediatr Pulmonol 2003; 36: 260 (abstract).

    Google Scholar 

  57. Liu X et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol 2002; 20: 47–52.

    Article  CAS  PubMed  Google Scholar 

  58. Beck SE et al. Deposition and expression of aerosolized rAAV vectors in the lungs of Rhesus macaques. Mol Ther 2002; 6: 546–554.

    Article  CAS  PubMed  Google Scholar 

  59. Lerondel S et al. Gene therapy for cystic fibrosis with aerosolized adenovirus-CFTR: characterization of the aerosol and scintigraphic determination of lung deposition in baboons. J Aerosol Med 2001; 14: 95–105.

    Article  CAS  PubMed  Google Scholar 

  60. Emerson M et al. Transfection efficiency and toxicity following delivery of naked plasmid DNA and cationic lipid–DNA complexes to ovine lung segments. Mol Ther 2003; 8: 646–653.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang Q, Li Z, Zhang Y, Engelhardt J . Development of a ferret model of cystic fibrosis. Pediatr Pulmonol 2000; 30: 218 (abstract).

    Google Scholar 

  62. Davis PB, Byard PJ, Konstan MW . Identifying treatments that halt progression of pulmonary disease in cystic fibrosis. Pediatr Res 1997; 41: 161–165.

    Article  CAS  PubMed  Google Scholar 

  63. Griesenbach U, Boyd AC . Preclinical and clinical endpoint assays for cystic fibrosis gene therapy. J Cystic Fibrosis (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesenbach, U., Geddes, D. & Alton, E. Gene therapy for cystic fibrosis: an example for lung gene therapy. Gene Ther 11 (Suppl 1), S43–S50 (2004). https://doi.org/10.1038/sj.gt.3302368

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302368

Keywords

This article is cited by

Search

Quick links