Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes

Abstract

Gene delivery to differentiated hepatocytes is notoriously difficult. Hepatocytes plated on collagen-coated dishes and maintained in dimethyl sulfoxide (DMSO)-supplemented medium acquire paracellular junctions, arrange themselves in multicellular islands and are an excellent in vitro model for studying liver function. Baculovirus-mediated gene delivery to hepatocytes in this culture system is restricted to peripheral cells of the islands. However, this limitation can be overcome by transient calcium depletion of the cells prior to and during baculovirus infection. Examination of the mechanism underlying this process revealed that calcium depletion was accompanied by a transient loss of intercellular contacts and paracellular junction complex integrity, increased distance between adjoining cells, and internalization of the tight junction protein, zona occludens ZO-1. Internalization of ZO-1 was accompanied by baculovirus infection of internal cells of hepatocyte islands. When calcium levels were restored, paracellular junction complex integrity returned to normal by 12 h. No permanent alterations in hepatocyte ultrastructure and albumin mRNA, and protein expression were caused by this gene transfer method. Loss in paracellular junction complex integrity exposes the basolateral (sinusoidal) surface of hepatocytes resulting in homogeneous baculovirus-mediated gene delivery to approximately 75% of the cells in long-term DMSO culture. We conclude that the use of recombinant baculovirus as a vector in combination with transient calcium depletion is a highly efficient method for delivering exogenous genes to hepatocytes without loss of hepatic differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Isom H et al. Persistence of liver-specific messenger RNA in cultured hepatocytes: different regulatory events for different genes. J Cell Biol 1987; 105: 2877–2885.

    Article  CAS  PubMed  Google Scholar 

  2. Isom HC et al. Maintenance of differentiated rat hepatocytes in primary culture. Proc Natl Acad Sci USA 1985; 82: 3252–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu JM et al. Functional analyses of albumin expression in a series of hepatocyte cell lines and in primary hepatocytes. Cell Growth Differ 1992; 3: 577–588.

    CAS  PubMed  Google Scholar 

  4. Bour ES et al. Tumor necrosis factor-alpha-induced apoptosis in hepatocytes in long-term culture. Am J Pathol 1996; 148: 485–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cable EE, Connor JR, Isom HC . Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron. Am J Pathol 1998; 152: 781–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Boyce FM, Bucher NL . Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci USA 1996; 93: 2348–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Condreay JP et al. Transient and stable gene expression in mammalian cells transduced with recombinant baculovirus vector. Proc Natl Acad Sci USA 1999; 96: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delaney 4th WE, Miller TG, Isom HC . Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (-)-beta-2′,3′-dideoxy-3′-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob Agents Chemotherap 1999; 43: 2017–2026.

    Article  CAS  Google Scholar 

  9. Ahern-Djamali SM et al. Mutations in Drosophila enabled and rescue by human vasodilator-stimulated phosphoprotein (VASP) indicate important functional roles for Ena/VASP homology domain 1 (EVH1) and EVH2 domains. Mol Biol Cell 1998; 9: 2157–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hofmann C, Lehnert W, Strauss M . The baculovirus vector system for gene delivery into hepatocytes. Gene Ther Mol Biol 1998; 1: 231–239.

    Google Scholar 

  11. Hofmann C et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA 1995; 92: 10099–10103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sandig V et al. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 1996; 7: 1937–1945.

    Article  CAS  PubMed  Google Scholar 

  13. Shoji I et al. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 1997; 78: 2657–2664.

    Article  CAS  PubMed  Google Scholar 

  14. Bilello JP et al. Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. J Virol 2001; 75: 9857–9871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borrmann CM et al. Molecular diversity of plaques of epithelial-adhering junctions. Ann NY Acad Sci 2000; 915: 144–150.

    Article  CAS  PubMed  Google Scholar 

  16. Fujikura Y et al. Immunohistochemical analysis of rat liver using a monoclonal antibody (HAM8) against gap junction. Anat Rec 1993; 235: 335–341.

    Article  CAS  PubMed  Google Scholar 

  17. Fujimoto K . Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 1995; 108: 3443–3449.

    CAS  PubMed  Google Scholar 

  18. Novikoff PM et al. Characterizations of and interactions between bile ductule cells and hepatocytes in early stages of rat hepatocarcinogenesis induced by ethionine. Am J Pathol 1991; 139: 1351–1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tateno C, Yoshizato K . Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. Am J Pathol 1996; 148: 383–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsukita S and Tsukita S . Isolation of cell-to-cell adherens junctions from rat liver. J Cell Biol 1989; 108: 31–41.

    Article  CAS  PubMed  Google Scholar 

  21. Denker BM, Nigam SK . Molecular structure and assembly of the tight junction. Am J Physiol 1998; 274: F1–F9.

    Article  CAS  PubMed  Google Scholar 

  22. Mitic LL, Anderson JM . Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60: 121–142.

    Article  CAS  PubMed  Google Scholar 

  23. Wang G et al. Increasing epithelial junction permeability enhances gene transfer to airway epithelia in vivo. Am J Resp Cell Mol 2000; 22: 129–138.

    Article  Google Scholar 

  24. Kumar NM, Gilula NB . The gap junction communication channel. Cell 1996; 84: 381–388.

    Article  CAS  PubMed  Google Scholar 

  25. Esclatine A et al. Human cytomegalovirus infects Caco-2 intestinal epithelial cells basolaterally regardless of the differentiation state. J Virol 2000; 74: 513–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walters RW et al. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999; 274: 10219–10226.

    Article  CAS  PubMed  Google Scholar 

  27. Arnaout MA et al. Human recombinant granulocyte–macrophage colony-stimulating factor increases cell-to-cell adhesion and surface expression of adhesion-promoting surface glycoproteins on mature granulocytes. J Clin Invest 1986; 78: 597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang G et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J Virol 1998; 72: 9818–9826.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Loewenstein WR . Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 1981; 61: 829–913.

    Article  CAS  PubMed  Google Scholar 

  30. Holder JW, Elmore E, Barrett JC . Gap junction function and cancer. Cancer Res 1993; 53: 3475–3485.

    CAS  PubMed  Google Scholar 

  31. Revel JP et al. Cell junctions and intercellular communication. In Vitro 1980; 16: 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  32. Bozhkova VP, Rozanova NV . Local changes in gap junctional permeability accompany regionalization of the mesoderm in early fish (loach, Misgurnus fossilis) embryos. Membr Cell Biol 2000; 14: 189–198.

    CAS  PubMed  Google Scholar 

  33. Kawamura K et al. Bystander effect in uracil phosphoribosyltransferase/5-fluorouracil-mediated suicide gene therapy is correlated with the level of intercellular communication. Int J Oncol 2001; 18: 117–120.

    CAS  PubMed  Google Scholar 

  34. Li H et al. Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 1996; 134: 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  35. Munari-Silem Y et al. Cell–cell interactions in the process of differentiation of thyroid epithelial cells into follicles: a study by microinjection and fluorescence microscopy on in vitro reconstituted thyroid follicles. J Cell Physiol 1990; 145: 414–427.

    Article  CAS  PubMed  Google Scholar 

  36. Persidsky MD, Baillie GS . Fluorometric test of cell membrane integrity. Cryobiology 1977; 14: 322–331.

    Article  CAS  PubMed  Google Scholar 

  37. Rotman B, Papermaster BW . Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA 1966; 55: 134–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barth CA, Schwarz LR . Transcellular transport of fluorescein in hepatocyte monolayers: evidence for functional polarity of cells in culture. Proc Natl Acad Sci USA 1982; 79: 4985–4987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aeschbacher M, Reinhardt CA, Zbinden G . A rapid cell membrane permeability test using fluorescent dyes and flow cytometry. Cell Biol Toxicol 1986; 2: 247–255.

    Article  CAS  PubMed  Google Scholar 

  40. Prosperi E . Intracellular turnover of fluorescein diacetate. Influence on membrane ionic gradients on fluorescein efflux. Histochem J 1990; 22: 227–233.

    Article  CAS  PubMed  Google Scholar 

  41. Talamini MA, Kappus B, Hubbard A . Repolarization of hepatocytes in culture. Hepatology 1997; 25: 167–172.

    Article  CAS  PubMed  Google Scholar 

  42. Duisit G et al. Baculovirus vector requires electrostatic interactions including heparin sulfate for efficient gene transfer in mammalian cells. J Gene Med 1999; 1: 93–102.

    Article  CAS  PubMed  Google Scholar 

  43. Stow JL et al. Heparan sulfate proteoglycans are concentrated on the sinusoidal plasmalemmal domain and in intracellular organelles of hepatocytes. J Cell Biol 1985; 100: 975–980.

    Article  CAS  PubMed  Google Scholar 

  44. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Felgner PL, Ringold GM . Cationic liposome-mediated transfection. Nature 1989; 337: 387–388.

    Article  CAS  PubMed  Google Scholar 

  46. Jarnagin WR et al. Cationic lipid-mediated transfection of liver cells in primary culture. Nucl Acids Res 1992; 20: 4205–4211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rippe RA, Brenner DA, Leffert HL . DNA-mediated gene transfer into adult rat hepatocytes in primary culture. Mol Cell Biol 1990; 10: 689–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harada Y et al. Highly efficient suicide gene expression in hepatocellular carcinoma cells by Epstein–Barr virus-based plasmid vectors combined with polyamidoamine dendrimer. Cancer Gene Ther 2000; 7: 27–36.

    Article  CAS  PubMed  Google Scholar 

  49. Breiner KM, Urban S, Schaller H . Carboxypeptidase D (gp180), a golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses. J Virol 1998; 72: 8098–8104.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Q et al. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum Gene Ther 1993; 4: 403–409.

    Article  CAS  PubMed  Google Scholar 

  51. Kitten O, Cosset FL, Ferry N . Highly efficient retrovirus-mediated gene transfer into rat hepatocytes in vivo. Hum Gene Ther 1997; 8: 1491–1494.

    Article  CAS  PubMed  Google Scholar 

  52. Ferry N, Heard JM . Liver-directed gene transfer vectors. Hum Gene Ther 1998; 9: 1975–1981.

    Article  CAS  PubMed  Google Scholar 

  53. Ferry N et al. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci USA 1991; 88: 8377–8381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kay MA et al. Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum Gene Ther 1992; 3: 641–647.

    Article  CAS  PubMed  Google Scholar 

  55. Kay MA et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science 1993; 262: 117–119.

    Article  CAS  PubMed  Google Scholar 

  56. Hofmann C, Strauss M . Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther 1998; 5: 531–536.

    Article  CAS  PubMed  Google Scholar 

  57. Hofmann C et al. Protection of baculovirus-vectors against complement-mediated inactivation by recombinant soluble complement receptor type 1. Biol Chem 1999; 380: 393–395.

    Article  CAS  PubMed  Google Scholar 

  58. Huser A, Rudolph M, Hofmann C . Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nat Biotech 2001; 19: 451–455.

    Article  CAS  Google Scholar 

  59. Coito AJ et al. Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia–reperfusion injury. Transplantation 2002; 74: 96–102.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi Y et al. Adenovirus-mediated gene therapy to liver grafts: successful gene transfer by donor pretreatment. Surgery 2000; 128: 345–352.

    Article  CAS  PubMed  Google Scholar 

  61. Wang YN et al. In situ gene transfer into rat auxiliary liver transplant. Transplantation 1997; 64: 1537–1541.

    Article  CAS  PubMed  Google Scholar 

  62. Shaked A et al. Retroviral-mediated gene transfer into rat experimental liver transplant. Transplantation 1994; 57: 32–34.

    Article  CAS  PubMed  Google Scholar 

  63. Chu Q et al. Binding and uptake of cationic lipid : pDNA complexes by polarized airway epithelial cells. Hum Gene Ther 1999; 10: 25–36.

    Article  CAS  PubMed  Google Scholar 

  64. Johnson LG . Retroviral approaches to gene therapy of cystic fibrosis. Ann NY Acad Sci 2001; 953: 43–52.

    Article  CAS  PubMed  Google Scholar 

  65. Fraser MJ . Ultrastructural observations of virion maturation in Autographia californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cell cultures. J Ultrastruct Mol Struct Res 1986; 95: 189–195.

    Article  Google Scholar 

  66. Kool M et al. Detection and analysis of Autographica californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 1991; 183: 739–746.

    Article  CAS  PubMed  Google Scholar 

  67. Gorman C, Padmanabhan R, Howard BH . High efficiency DNA-mediated transformation of primate cells. Science 1983; 221: 551–553.

    Article  CAS  PubMed  Google Scholar 

  68. Boyce FM, Franco EA . High-efficiency transduction of mammalian cells using baculovirus: practical aspects 2000; 359–367. In A. Cid-Arregui and A. Garcia-Carranca (ed.)), Viral VVectors: Basic Science and Gene Therapy. Eaton Publishing, Natick, Mass.

  69. Delaney 4th WE, Isom HC . Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 1998; 28: 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  70. Cable EE, Miller TG, Isom HC . Regulation of heme metabolism in rat hepatocytes and hepatocyte cell lines: δ-aminolevulinic acid synthase and heme oxygenase are regulated by different heme-dependent mechanisms. Arch Biochem Biophys 2000; 384: 280–295.

    Article  CAS  PubMed  Google Scholar 

  71. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  72. Smith PK et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76–85.

    Article  CAS  PubMed  Google Scholar 

  73. Laemmli UK . Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Colleen Kelley, Nidhi Mahendru, Tom Miller and Nicole Zandy for their excellent technical assistance. We thank Dr TW Gardner, Penn State University College of Medicine, Hershey, PA, for providing the anti-ZO-1 antibody and Dr FR Boyce, Department of Neurology, Massachusetts General Hospital, Boston, MA, for providing the CMV-lacZ baculovirus and anti-gp64 antibody. We thank Nicole Harhaj for the helpful discussions. This work was supported in part by research grants from the National Institutes of Health (CA23931, CA73045, DK53430, and DK54482 to HCI).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilello, J., Cable, E., Myers, R. et al. Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther 10, 733–749 (2003). https://doi.org/10.1038/sj.gt.3301937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301937

Keywords

This article is cited by

Search

Quick links