Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ly49 cluster sequence analysis in a mouse model of diabetes: an expanded repertoire of activating receptors in the NOD genome

Abstract

The mouse Ly49 and human killer cell immunoglobulin-like receptors (KIR) gene clusters encode activating and inhibitory class I MHC receptors on natural killer (NK) cells. A direct correlation between the presence of multiple activating KIR and various human autoimmune diseases including diabetes has been shown. Previous studies have implicated NK cell receptors in the development of diabetes in the non-obese diabetic (NOD) inbred mouse strain. To assess the contribution of Ly49 to NOD disease acceleration the Ly49 gene cluster of these mice was sequenced. Remarkably, the NOD Ly49 haplotype encodes the largest haplotype and the most functional activating Ly49 of any known mouse strain. These activating Ly49 include three Ly49p-related and two Ly49h-related genes. The NOD cluster contains large regions highly homologous to both C57BL/6 and 129 haplotypes, suggesting unequal crossing over as a mechanism of Ly49 haplotype evolution. Interestingly, the 129-like region has duplicated in the NOD genome. Thus, the NOD Ly49 cluster is a unique mix of elements seen in previously characterized Ly49 haplotypes resulting in a disproportionately large number of functional activating Ly49 genes. Finally, the functionality of activating Ly49 in NOD mice was confirmed in cytotoxicity assays.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Babaya N, Nakayama M, Eisenbarth GS . The stages of type 1A diabetes. Ann NY Acad Sci 2005; 1051: 194–204.

    Article  CAS  Google Scholar 

  2. Aoki CA, Borchers AT, Ridgway WM, Keen CL, Ansari AA, Gershwin ME . NOD mice and autoimmunity. Autoimmun Rev 2005; 4: 373–379.

    Article  CAS  Google Scholar 

  3. Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 2005; 25 (Suppl): 29–33.

    Article  CAS  Google Scholar 

  4. Alyanakian MA, You S, Damotte D, Gouarin C, Esling A, Garcia C et al. Diversity of regulatory CD4+T cells controlling distinct organ-specific autoimmune diseases. Proc Natl Acad Sci USA 2003; 100: 15806–15811.

    Article  CAS  Google Scholar 

  5. Tisch R, McDevitt H . Insulin-dependent diabetes mellitus. Cell 1996; 85: 291–297.

    Article  CAS  Google Scholar 

  6. Lanier LL . NK cell recognition. Annu Rev Immunol 2005; 23: 225–274.

    Article  CAS  Google Scholar 

  7. Nair MP, Lewis EW, Schwartz SA . Immunoregulatory dysfunctions in type I diabetes: natural and antibody-dependent cellular cytotoxic activities. J Clin Immunol 1986; 6: 363–372.

    Article  CAS  Google Scholar 

  8. Rodacki M, Svoren B, Butty V, Besse W, Laffel L, Benoist C et al. Altered natural killer cells in type 1 diabetic patients. Diabetes 2007; 56: 177–185.

    Article  CAS  Google Scholar 

  9. Johansson SE, Hall H, Bjorklund J, Hoglund P . Broadly impaired NK cell function in non-obese diabetic mice is partially restored by NK cell activation in vivo and by IL-12/IL-18 in vitro. Int Immunol 2004; 16: 1–11.

    Article  CAS  Google Scholar 

  10. Ogasawara K, Hamerman JA, Hsin H, Chikuma S, Bour-Jordan H, Chen T et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 2003; 18: 41–51.

    Article  CAS  Google Scholar 

  11. Carnaud C, Gombert J, Donnars O, Garchon H, Herbelin A . Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex. J Immunol 2001; 166: 2404–2411.

    Article  CAS  Google Scholar 

  12. Johansson S, Berg L, Hall H, Hoglund P . NK cells: elusive players in autoimmunity. Trends Immunol 2005; 26: 613–618.

    Article  CAS  Google Scholar 

  13. Karlhofer FM, Ribaudo RK, Yokoyama WM . MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 1992; 358: 66–70.

    Article  CAS  Google Scholar 

  14. Anderson SK, Dewar K, Goulet ML, Leveque G, Makrigiannis AP . Complete elucidation of a minimal class I MHC natural killer cell receptor haplotype. Genes Immun 2005; 6: 481–492.

    Article  CAS  Google Scholar 

  15. Makrigiannis AP, Patel D, Goulet ML, Dewar K, Anderson SK . Direct sequence comparison of two divergent class I MHC natural killer cell receptor haplotypes. Genes Immun 2005; 6: 71–83.

    Article  CAS  Google Scholar 

  16. Mason LH, Gosselin P, Anderson SK, Fogler WE, Ortaldo JR, McVicar DW . Differential tyrosine phosphorylation of inhibitory versus activating Ly-49 receptor proteins and their recruitment of SHP-1 phosphatase. J Immunol 1997; 159: 4187–4196.

    CAS  PubMed  Google Scholar 

  17. Nakamura MC, Niemi EC, Fisher MJ, Shultz LD, Seaman WE, Ryan JC . Mouse Ly-49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP-1 tyrosine phosphatase. J Exp Med 1997; 185: 673–684.

    Article  CAS  Google Scholar 

  18. Mason LH, Willette-Brown J, Anderson SK, Gosselin P, Shores EW, Love PE et al. Characterization of an associated 16-kDa tyrosine phosphoprotein required for Ly-49D signal transduction. J Immunol 1998; 160: 4148–4152.

    CAS  PubMed  Google Scholar 

  19. Smith KM, Wu J, Bakker AB, Phillips JH, Lanier LL . Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J Immunol 1998; 161: 7–10.

    CAS  PubMed  Google Scholar 

  20. Mason LH, Ortaldo JR, Young HA, Kumar V, Bennett M, Anderson SK . Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). J Exp Med 1995; 182: 293–303.

    Article  CAS  Google Scholar 

  21. Silver ET, Gong DE, Chang CS, Amrani A, Santamaria P, Kane KP . Ly-49P activates NK-mediated lysis by recognizing H-2Dd. J Immunol 2000; 165: 1771–1781.

    Article  CAS  Google Scholar 

  22. Silver ET, Gong DE, Hazes B, Kane KP . Ly-49W, an activating receptor of nonobese diabetic mice with close homology to the inhibitory receptor Ly-49G, recognizes H-2Dk and H-2Dd. J Immunol 2001; 166: 2333–2341.

    Article  CAS  Google Scholar 

  23. Makrigiannis AP, Gosselin P, Mason LH, Taylor LS, McVicar DW, Ortaldo JR et al. Cloning and characterization of a novel activating Ly49 closely related to Ly49A. J Immunol 1999; 163: 4931–4938.

    CAS  PubMed  Google Scholar 

  24. Gosselin P, Mason LH, Willette-Brown J, Ortaldo JR, McVicar DW, Anderson SK . Induction of DAP12 phosphorylation, calcium mobilization, and cytokine secretion by Ly49H. J Leukoc Biol 1999; 66: 165–171.

    Article  CAS  Google Scholar 

  25. van der Slik AR, Koeleman BP, Verduijn W, Bruining GJ, Roep BO, Giphart MJ . KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 2003; 52: 2639–2642.

    Article  CAS  Google Scholar 

  26. Rogner UC, Boitard C, Morin J, Melanitou E, Avner P . Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 2001; 74: 163–171.

    Article  CAS  Google Scholar 

  27. Mason LH, Anderson SK, Yokoyama WM, Smith HR, Winkler-Pickett R, Ortaldo JR . The Ly-49D receptor activates murine natural killer cells. J Exp Med 1996; 184: 2119–2128.

    Article  CAS  Google Scholar 

  28. Smith HR, Chuang HH, Wang LL, Salcedo M, Heusel JW, Yokoyama WM . Nonstochastic coexpression of activation receptors on murine natural killer cells. J Exp Med 2000; 191: 1341–1354.

    Article  CAS  Google Scholar 

  29. Makrigiannis AP, Pau AT, Saleh A, Winkler-Pickett R, Ortaldo JR, Anderson SK . Class I MHC-binding characteristics of the 129/J Ly49 repertoire. J Immunol 2001; 166: 5034–5043.

    Article  CAS  Google Scholar 

  30. Proteau M-F, Rousselle E, Makrigiannis AP . Mapping of the BALB/c Ly49 cluster defines a minimal natural killer cell receptor gene repertoire. Genomics 2004; 84: 669–677.

    Article  CAS  Google Scholar 

  31. Desrosiers MP, Kielczewska A, Loredo-Osti JC, Adam SG, Makrigiannis AP, Lemieux S et al. Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 2005; 37: 593–599.

    Article  CAS  Google Scholar 

  32. Saleh A, Makrigiannis AP, Hodge DL, Anderson SK . Identification of a novel Ly49 promoter that is active in bone marrow and fetal thymus. J Immunol 2002; 168: 5163–5169.

    Article  CAS  Google Scholar 

  33. Saleh A, Davies GE, Pascal V, Wright PW, Hodge DL, Cho EH et al. Identification of probabilistic transcriptional switches in the Ly49 gene cluster: a eukaryotic mechanism for selective gene activation. Immunity 2004; 21: 55–66.

    Article  CAS  Google Scholar 

  34. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J et al. Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 2002; 169: 2818–2822.

    Article  CAS  Google Scholar 

  35. McVicar DW, Winkler-Pickett R, Taylor LS, Makrigiannis A, Bennett M, Anderson SK et al. Aberrant DAP12 signaling in the 129 strain of mice: implications for the analysis of gene-targeted mice. J Immunol 2002; 169: 1721–1728.

    Article  CAS  Google Scholar 

  36. Furukawa H, Iizuka K, Poursine-Laurent J, Shastri N, Yokoyama WM . A ligand for the murine NK activation receptor Ly-49D: activation of tolerized NK cells from beta 2-microglobulin-deficient mice. J Immunol 2002; 169: 126–136.

    Article  CAS  Google Scholar 

  37. Nakamura MC, Naper C, Niemi EC, Spusta SC, Rolstad B, Butcher GW et al. Natural killing of xenogeneic cells mediated by the mouse Ly-49D receptor. J Immunol 1999; 163: 4694–4700.

    CAS  PubMed  Google Scholar 

  38. Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenko OV et al. Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int Immunol 2001; 13: 887–896.

    Article  CAS  Google Scholar 

  39. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL . Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002; 296: 1323–1326.

    Article  CAS  Google Scholar 

  40. Ogasawara K, Hamerman JA, Ehrlich LR, Bour-Jordan H, Santamaria P, Bluestone JA et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 2004; 20: 757–767.

    Article  CAS  Google Scholar 

  41. Alba A, Planas R, Clemente X, Carrillo J, Ampudia R, Puertas MC et al. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-beta. Clin Exp Immunol 2008; 151: 467–475.

    Article  CAS  Google Scholar 

  42. Inoue Y, Kaifu T, Sugahara-Tobinai A, Nakamura A, Miyazaki J, Takai T . Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice. J Immunol 2007; 179: 764–774.

    Article  CAS  Google Scholar 

  43. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 2002; 99: 8826–8831.

    Article  CAS  Google Scholar 

  44. Nakamura MC, Linnemeyer PA, Niemi EC, Mason LH, Ortaldo JR, Ryan JC et al. Mouse Ly-49D recognizes H-2Dd and activates natural killer cell cytotoxicity. J Exp Med 1999; 189: 493–500.

    Article  CAS  Google Scholar 

  45. Mason LH, Willette-Brown J, Mason AT, McVicar D, Ortaldo JR . Interaction of Ly-49D+ NK cells with H-2Dd target cells leads to Dap-12 phosphorylation and IFN-gamma secretion. J Immunol 2000; 164: 603–611.

    Article  CAS  Google Scholar 

  46. Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM et al. Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 2001; 193: 1159–1167.

    Article  CAS  Google Scholar 

  47. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002; 31: 429–434.

    Article  CAS  Google Scholar 

  48. Lopez-Vazquez A, Rodrigo L, Martinez-Borra J, Perez R, Rodriguez M, Fdez-Morera JL et al. Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin-like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection. J Infect Dis 2005; 192: 162–165.

    Article  CAS  Google Scholar 

  49. Kielczewska A, Kim HS, Lanier LL, Dimasi N, Vidal SM . Critical residues at the Ly49 natural killer receptor's homodimer interface determine functional recognition of m157, a mouse cytomegalovirus MHC class I-like protein. J Immunol 2007; 178: 369–377.

    Article  CAS  Google Scholar 

  50. Negishi K, Waldeck N, Chandy G, Buckingham B, Kershnar A, Fisher L et al. Natural killer cell and islet killer cell activities in human type 1 diabetes. Exp Clin Endocrinol 1987; 89: 345–353.

    Article  CAS  Google Scholar 

  51. Makrigiannis AP, Rousselle E, Anderson SK . Independent control of Ly49g alleles: implications for NK cell repertoire selection and tumor cell killing. J Immunol 2004; 172: 1414–1425.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christophe Benoist for his essential aid in initiating the sequencing of the NOD Ly49 region. We also thank Dr Silvia Vidal for her help with MCMV plaque assays and reagents. We gratefully acknowledge the genome sequencing efforts of The Wellcome Trust Sanger Institute. This work was supported by an Operating Grant from the Canadian Institutes of Health Research (CIHR MOP 62841). This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This project has also been funded in part with Federal funds from the National Cancer Institute, National Institutes of Health, under contract no. NO1-CO-12400. SB is supported by a scholarship from the Fonds de la recherche en santé du Québec. L-HT is supported by a CIHR Cancer Training Program scholarship. APM is supported by a New Investigator Award from the CIHR.

Animal care was provided in accordance with the procedures approved by the IRCM Animal Care Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Makrigiannis.

Additional information

Disclosure

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belanger, S., Tai, LH., Anderson, S. et al. Ly49 cluster sequence analysis in a mouse model of diabetes: an expanded repertoire of activating receptors in the NOD genome. Genes Immun 9, 509–521 (2008). https://doi.org/10.1038/gene.2008.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.43

Keywords

This article is cited by

Search

Quick links