Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomic DNA pooling for whole-genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis

Abstract

A pragmatic approach that balances the benefit of a whole-genome association (WGA) experiment against the cost of individual genotyping is to use pooled genomic DNA samples. We aimed to determine the feasibility of this approach in a WGA scan in rheumatoid arthritis (RA) using the validated human leucocyte antigen (HLA) and PTPN22 associations as test loci. A total of 203 269 single-nucleotide polymorphisms (SNPs) on the Affymetrix 100K GeneChip and Illumina Infinium microarrays were examined. A new approach to the estimation of allele frequencies from Affymetrix hybridization intensities was developed involving weighting for quality signals from the probe quartets. SNPs were ranked by z-scores, combined from United Kingdom and New Zealand case–control cohorts. Within a 1.7 Mb HLA region, 33 of the 257 SNPs and at PTPN22, 21 of the 45 SNPs, were ranked within the top 100 associated SNPs genome wide. Within PTPN22, individual genotyping of SNP rs1343125 within MAGI3 confirmed association and provided some evidence for association independent of the PTPN22 620W variant (P=0.03). Our results emphasize the feasibility of using genomic DNA pooling for the detection of association with complex disease susceptibility alleles. The results also underscore the importance of the HLA and PTPN22 loci in RA aetiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K, Silman AJ . Characterising the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43: 30–37.

    Article  CAS  Google Scholar 

  2. Gregersen PK, Silver J, Winchester RJ . The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205–1213.

    Article  CAS  Google Scholar 

  3. Gregersen PK, Lee HS, Batliwalla F, Begovich AB . PTPN22: setting thresholds for autoimmunity. Semin Immunol 2006; 18: 214–223.

    Article  CAS  Google Scholar 

  4. Iwamoto T, Ikari K, Nakamura T, Kuwahara M, Toyama Y, Tomatsu T et al. Association between PADI4 and rheumatoid arthritis: a meta-analysis. Rheumatology 2006; 45: 804–807.

    Article  CAS  Google Scholar 

  5. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060.

    Article  CAS  Google Scholar 

  6. Matsuzaki H, Dong S, Loi H, Di X, Liu G, Hubbell E et al. Genotyping over 100 000 SNPs on a pair of oligonucleotide arrays. Nat Methods 2004; 1: 109–111.

    Article  CAS  Google Scholar 

  7. Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS . A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 2005; 37: 549–554.

    Article  CAS  Google Scholar 

  8. Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, Shen R . Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 2006; 7: 641–648.

    Article  CAS  Google Scholar 

  9. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385–389.

    Article  CAS  Google Scholar 

  10. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312: 279–283.

    Article  CAS  Google Scholar 

  11. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 2006; 38: 617–619.

    Article  CAS  Google Scholar 

  12. Zuo Y, Zuo G, Zhao H . Two-stage designs in case–control association analysis. Genetics 2006; 173: 1747–1760.

    Article  CAS  Google Scholar 

  13. Skol AD, Scott LJ, Abecasis GR, Boehnke M . Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209–213.

    Article  CAS  Google Scholar 

  14. Fisher PJ, Turic D, Williams NM, McGuffin P, Asherson P, Ball D et al. DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Hum Mol Genet 1999; 8: 915–922.

    Article  CAS  Google Scholar 

  15. Bansal A, van den Boom D, Kammerer S, Honisch C, Adam G, Cantor CR et al. Association testing by DNA pooling: an effective initial screen. Proc Natl Acad Sci USA 2002; 99: 16871–16874.

    Article  CAS  Google Scholar 

  16. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  Google Scholar 

  17. Spector TD, Reneland RH, Mah S, Valdes AM, Hart DJ, Kammerer S et al. Association between a variation in LRCH1 and knee osteoarthritis. Arthritis Rheum 2006; 54: 524–532.

    Article  CAS  Google Scholar 

  18. Spinola M, Meyer P, Kammerer S, Falvella FS, Boettger ME, Hoyal CR et al. Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J Clin Oncol 2006; 24: 1672–1678.

    Article  CAS  Google Scholar 

  19. Meaburn E, Butcher LM, Schalkwyk LC, Plomin R . Genotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans. Nucl Acids Res 2006; 34: e27.

    Article  Google Scholar 

  20. Downes K, Barratt BJ, Akan P, Bumpstead SJ, Taylor SD, Clayton DG, Deloukas P . SNP allele frequency estimation in DNA pools and variance components analysis. Biotechniques 2004; 5: 840–845.

    Article  Google Scholar 

  21. Carlton VE, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 2005; 77: 567–581.

    Article  CAS  Google Scholar 

  22. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 76–80.

    Article  CAS  Google Scholar 

  23. Barrett JC, Cardon LR . Evaluating coverage of genome-wide association studies. Nat Genet 2006; 38: 659–662.

    Article  CAS  Google Scholar 

  24. Moskvina V, Norton N, Williams N, Holmans P, Owen M, O'Donovan M . Streamlined analysis of pooled genotype data in SNP-based association studies. Genet Epidemiol 2005; 28: 273–282.

    Article  Google Scholar 

  25. Meaburn E, Butcher LM, Liu L, Fernandes C, Hansen V, Al-Chalabi A et al. Genotyping DNA pools on microarrays: Tackling the QTL problem of large samples and large numbers of SNPs. BMC Genomics 2005; 6: 52–59.

    Article  Google Scholar 

  26. Kirov G, Nikolov I, Georgieva L, Moskvina V, Owen MJ, O'Donovan MC . Pooled DNA genotyping on Affymetrix SNP genotyping arrays. BMC Genomics 2006; 7: 27.

    Article  Google Scholar 

  27. Wright GJ, Leslie JD, Ariza-McNaughton L, Lewis J . Delta proteins and MAGI proteins: an interaction of Notch ligands with intracellular scaffolding molecules and its significance for zebrafish development. Development 2004; 131: 5659–5669.

    Article  CAS  Google Scholar 

  28. Ando K, Kanazawa S, Tetsuka T, Ohta S, Jiang X, Tada T et al. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene 2003; 22: 7796–7803.

    Article  CAS  Google Scholar 

  29. Arking DE, Pfeufer A, Post W, Kao WHL, Newton-Cheh C, Ikeda M et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 2006; 644: 644–651.

    Article  Google Scholar 

  30. Tamiya G, Shinya M, Imanishi T, Ikuta T, Makino S, Okamoto K et al. Whole genome association study of rheumatoid arthritis using 27 039 microsatellites. Hum Mol Genet 2005; 14: 2305–2321.

    Article  CAS  Google Scholar 

  31. Newton J, Brown MA, Milicic A, Ackerman H, Darke C, Wilson JN et al. The effect of HLA-DR on susceptibility to rheumatoid arthritis is influenced by the associated lymphotoxin alpha-tumor necrosis factor haplotype. Arthritis Rheum 2003; 48: 90–96.

    Article  CAS  Google Scholar 

  32. Newton JL, Harney SM, Timms AE, Sims AM, Rockett K, Darke C et al. Dissection of class III major histocompatibility complex haplotypes associated with rheumatoid arthritis. Arthritis Rheum 2004; 50: 2122–2129.

    Article  CAS  Google Scholar 

  33. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 2002; 71: 585–594.

    Article  CAS  Google Scholar 

  34. Singal DP, Li J, Lei K . Genetics of rheumatoid arthritis (RA): two separate regions in the major histocompatibility complex contribute to susceptibility to RA. Immunol Lett 1999; 69: 301–306.

    Article  CAS  Google Scholar 

  35. Zanelli E, Jones G, Pascual M, Eerligh P, van der Slik AR, Zwinderman AH et al. The telomeric part of the HLA region predisposes to rheumatoid arthritis independently of the class II loci. Hum Immunol 2001; 62: 75–84.

    Article  CAS  Google Scholar 

  36. Dyer PA, Thomson W, Sanders PA, Grennan DM . Are major histocompatibility system class III products independent markers for susceptibility to rheumatoid arthritis? Dis Markers 1986; 4: 151–155.

    CAS  PubMed  Google Scholar 

  37. Fielder AH, Ollier W, Lord DK, Burley MW, Silman A, Awad J et al. HLA class III haplotypes in multicase rheumatoid arthritis families. Hum Immunol 1989; 25: 75–85.

    Article  CAS  Google Scholar 

  38. Okamoto K, Makino S, Yoshikawa Y, Takaki A, Nagatsuka Y, Ota M et al. Identification of I kappa BL as the second major histocompatibility complex-linked susceptibility locus for rheumatoid arthritis. Am J Hum Genet 2003; 72: 303–312.

    Article  CAS  Google Scholar 

  39. Brintnell W, Zeggini E, Barton A, Thomson W, Eyre S, Hinks A et al. Evidence for a novel rheumatoid arthritis susceptibility locus on chromosome 6p. Arthritis Rheum 2004; 50: 3823–3830.

    Article  CAS  Google Scholar 

  40. Roeder K, Bacanu SA, Wasserman L, Devlin B . Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 2006; 78: 243–252.

    Article  CAS  Google Scholar 

  41. Ehm MG, Nelson MR, Spurr NK . Guidelines for conducting and reporting whole genome/large-scale association studies. Hum Mol Genet 2005; 14: 2485–2488.

    Article  CAS  Google Scholar 

  42. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  43. Liu WM, Di X, Yang G, Matsuzaki H, Huang J, Mei R et al. Algorithms for large-scale genotyping microarrays. Bioinformatics 2003; 19: 2397–2403.

    Article  CAS  Google Scholar 

  44. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM et al. Population structure, differential bias and genomic control in a large-scale, case–control association study. Nat Genet 2005; 37: 1243–1246.

    Article  CAS  Google Scholar 

  45. Simkins HM, Merriman ME, Highton J, Chapman PT, O'Donnell JL, Jones PB et al. Association of the PTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis Rheum 2005; 52: 2222–2225.

    Article  CAS  Google Scholar 

  46. Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK . A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 2006; 38: 75–81.

    Article  CAS  Google Scholar 

  47. Shi YY, He L . SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphic loci. Cell Res 2005; 15: 97–98.

    Article  CAS  Google Scholar 

  48. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Health Research Council of New Zealand, the Arthritis and Rheumatism Council in the United Kingdom, Myriad Genetics Inc. and NHS Research and Development funding for recruitment carried out at Guy's and St Thomas' and Lewisham hospitals. We thank NZ research nurses Gael Hewett and Sue Yeoman, UK research nurse Janet Grumley, and Bhaneeta Lad for technical assistance, and Cathryn Lewis and Sheila Fisher for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T R Merriman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steer, S., Abkevich, V., Gutin, A. et al. Genomic DNA pooling for whole-genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis. Genes Immun 8, 57–68 (2007). https://doi.org/10.1038/sj.gene.6364359

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364359

Keywords

This article is cited by

Search

Quick links